Молниезащита
Промышленная автоматика
Статьи / Промышленная автоматика / Фотоэлектрические датчики. Фотодатчики. Устройство, типы и виды фотодатчиков.
  23.12.11  |  

Фотоэлектрические датчики. Фотодатчики. Устройство, типы и виды фотодатчиков.

Фотоэлектрические датчики (фотодатчики) используются в автоматике для преобразования в электрический сигнал различных неэлектрических величин: механических перемещений, скорости размеров движущихся деталей, температуры, освещенности, прозрачности жидкой или газовой среды и т. д.

   По принципу кодирования информации фотодатчики можно разделить на две группы: с амплитудной модуляцией светового потока и с временной или частотной модуляцией. У датчиков с амплитудной модуляцией значение фототока пропорционально световому потоку, зависящему от управляемой (контролируемой) неэлектрической величины. У датчиков с временной или частотной модуляцией фототок изменяется дискретно за счет полного или частичного прерывания светового потока от воздействия неэлектрической величины. Информация об управляемом (контролируемом) параметре кодируется в этих датчиках в виде числа, частоты или длительности импульсов фототока.

   Фотодатчик в общем случае состоит из фотоэлектрического чувствительного элемента (фотоэлемента) источника света и оптической системы. В некоторых случаях фотодатчики используют световое излучение объекта управления (контроля) и не содержат источника света (датчики астрономического компаса, температуры, освещенности и др.). Некоторые датчики с целью упрощения конструкции могут не содержать оптической системы.





Фотодатчик со световым потоком прерываемым обьектом управления

   В большинстве фотодатчиков преобразование входной неэлектрической величины в электрический сигнал осуществляется в два этапа: сначала происходит ее преобразование в изменение одного из параметров светового потока (силы света, освещенности, спектрального состава и т. п.), а затем это изменение преобразуется фотоэлементом в электрическую величину (фототок, падение напряжения, фото-ЭДС и т. д.).

   Все фотодатчики по характеру формирования воздействия светового потока на фотоэлемент можно разделить на несколько видов.

1.     Фотодатчики, у которых световой поток изменяется за счет перемещения объекта управления (контроля) или изменения размеров объекта (рис. 2-7). В этих датчиках источник света 1 и оптическая система (конденсор) 2 формируют параллельный и равномерный световой поток Ф.. В этом световом потоке помещается     деталь З, размеры которой нужно контролировать, или заслонка 4, связанная механически с ОУ и перекрывающая часть светового потока. При изменении размера детали d или при перемещении заслонки х изменяется количество света (лучистой энергии), попадающего на фотоэлемент 5. Для повышения чувствительности световой поток Ф1, содержащий информацию о размерах детали (или о перемещении объекта), собирается оптической системой 6 и фокусируется на светочувствительную поверхность фотоэлемента. По такому принципу работают датчики фотоэлектрических микрометров, датчики длины, площади, деформаций и т. д. На этом принципе основана работа и дискретных фотодатчиков, таких, как фотоэлектрические датчики (преобразователи) «угол — код», датчики частоты вращения, фотосчитывающие датчики с перфолент, перфокарт, фотодатчики конца магнитной ленты, датчики размеров петли магнитной ленты, находящейся в кармане лентопротяжного механизма ЗУ на магнитной ленте, и т. д.

2.     Фотодатчики, у которых световой поток попадает на фото элемент после отражения от объекта управления (контроля) (рис. 2-8). В этих фотодатчиках источник света 1 и оптическая система 2 формируют узкий световой луч, который после отражения от объекта З попадает через собирающую и фокусирующую оптическую систему 4 на фотоэлемент 5. Количество отраженного света, попадающего на фотоэлемент, зависит от отражательной способности поверхности объекта (чистоты обработки, блесткости, наличия участков, покрытых краской, и т. п.). Такие фотодатчики используются в читающих автоматах, способных автоматически считывать и кодировать информацию с текстовых и графических документов, в измерителях чистоты поверхности, фотоэлектрических рефлектометрах, гигрометрах и пр.





Фотодатчик со световым потоком отраженным от обьекта управления

3.     Фотодатчики, у которых световой поток создается объектом управления (контроля) (рис.2-9). В этих фотодатчиках световой поток, излучаемый ОУ, содержит информацию об управляемом (контролируемом) параметре объекта 1. Оптическая система 2 собирает и фокусирует световой поток на светочувствительную поверхность фотоэлемента З. Подобные фотодатчики используются в фотоэлектрических измерителях температуры, дозиметрах лучистой энергии, приборах для эмиссионного спектрального анализа.

   В качестве чувствительных элементов в фотодатчиках используются фотоэлементы с внешним, вентильным и внутренним фотоэффектом.

Фотоэлементы с внешним фотоэффектом

Это вакуумные и газонаполненные фотоэлементы, фотоумножители обладают высокой линейностью световой характеристики (зависимость фототока от светового потока), высокой температурной стабильностью характеристик. Однако они имеют и ряд существенных недостатков, ограничивающих их применение в устройствах автоматического управления и контроля: необходимость в повышенном напряжении питания (сотни и тысячи вольт); хрупкость стеклянного баллона и возможность деформации электродов при механических воздействиях; старение и утомляемость фотоэлементов (снижение чувствительности при сильной освещенности).

Вентильные фотоэлементы

Они отличаются Высокой надежностью и долговечностью не нуждаются в источнике питания, имеют малую массу и габариты. Недостатками их являются: сильное влияние окружающей температуры; утомляемость и высокая инерционность, ограничивающая применение при частоте прерывания светового потока в несколько десятков герц.


Фотодатчик со световым потоком излучаемым обьектом управления

  Фотодиоды и фототриоды

 

широко применяются в фотодатчиках различного типа. Они имеют линейную световую характеристику, высокую чувствительность, малую инерционность (частота прерывания светового потока может быть до нескольких килогерц), малые габариты. В зависимости от схемы включения различают вентильный и фотодиодный (фототриодный) режимы работы фотодиодов и фототриодов.

   В вентильном режиме фотодиод является генератором фото тока и не нуждается в источнике питания. Фототриод в вентильном режиме можно рассматривать как комбинированный электронный прибор — фотодиод (п-р-переход цепи база — эмиттер) и собственно триод, усиливающий фототок, который возникает в цепи база — эмиттер под действием светового потока. База фототриода в этом режиме замыкается накоротко с эмиттером. В вентильном режиме фотодиоды и фототриоды используются в фотодатчиках с пропорциональной световой характеристикой (измерение размеров, перемещений, температуры и т. д.).

   В фотодиодном режиме к фотодиоду нужно приложить в обратном запирающем направлении внешнее напряжение. У фототриодов в фототриодном режиме в цепь базы подается напряжение смещения от внешнего источника. Фотодиодный (фототриодный) режим включения фотодиодов (фототриодов) используется в основном в фотодатчиках с дискретной световой характеристикой (фотосчитывающие устройства с перфолент, перфокарт, фотоэлектрические преобразователи «угол—код», читающие автоматы и т. д.). В фотодиодном (фототриодном) режиме фотодиоды и фототриоды имеют большую чувствительность, чем в вентильном (выходным сигналом в этом режиме является напряжение).

  Фоторезисторы

 

наряду с фотодиодами и фототриодами находят широкое применение, причем в основном в фотодатчиках с дискретной световой характеристикой. Достоинством фоторезисторов является высокая чувствительность, стабильность параметров, большая надежность и долговечность, возможность работы, как на постоянном, так и на переменном токе, малые габариты. К их недостаткам следует отнести большую инерционность, сильное влияние окружающей температуры, нелинейность световой характеристики, большой разброс параметров у фоторезисторов одной партии.

   В качестве источников световой энергии в некоторых фотодатчиках используется сам ОУ (при измерении температуры, освещенности и т.п.). Большинство же фотодатчиков

нуждается в искусственном источнике светового потока. Наибольшее распространение в качестве такого источника в фотодатчиках получили недорогие и простые в эксплуатации

лампы накаливания. С целью повышения их надежности и долговечности рабочее

напряжение снижают на 20—З0 % по сравнению с номинальным.

   Для работы в инфракрасной области спектра применяют специальные излучатели в виде штифтов из жаропрочных полупроводниковых материалов. Менее распространены в фотодатчиках газоразрядные лампы. Они имеют высокую светоотдачу и потребляют при этом в 2—З раза меньше энергии, чем лампы накаливания. Однако номенклатура этих ламп ограничена, габариты их больше, чем ламп накаливания.

    Оптические системы фотодатчиков служат для перераспределения в пространстве потока лучистой энергии с целью повышения эффективности воздействия объектов управления (контроля) на параметры лучистого потока. Функции оптических систем фотодатчиков весьма разнообразны и требуют применения самых различных линз, зеркал, призм, диафрагм, дифракционных решеток, светофильтров и т. д.

   С целью повышения помехоустойчивости в некоторых фотодатчиках размещается предварительный усилитель выходного сигнала фотоэлемента. Для этой цели в настоящее время в основном используют микроэлектронные операционные усилители.

   В целом, оценивая фотодатчики, следует отметить их большую универсальность, отсутствие обратного воздействия на объект управления (контроля) — бесконтактность. Недостатками фотодатчиков являются чувствительность к вибрациям, ударам, плохая работа в запыленной, загазованной и влажной среде, помехи от осветительных приборов общего освещения.



Другие статьи:

Тензометрические датчики. Тензодатчики. Устройство тензодатчиков.
Датчики – источники первичной информации. Классификация датчиков. Виды и типы датчиков.
Выбор преобразователя частоты (частотный преобразователь).