Молниезащита
Другое
Статьи / Другое / Термоэлектрический генератор. Устройство, виды, принцип действия термоэлектрического генератора.
  19.02.17  |  

Термоэлектрический генератор. Устройство, виды, принцип действия термоэлектрического генератора.

Термоэлектрические генераторы


В качестве устройства для прямого превращения теплоты в электрическую энергию применяют термоэлектрические генераторы, которые используют принцип работы обычных термопар (рис. 1).



Принцип работы термопар



Принцип работы термопар


Рис. 1. Принцип работы обычных термопар


Термоэлектрический генератор (ТЭГ) - это устройство для прямого преобразования тепловой энергии в электрическую с использованием полупроводниковых термоэлементов (рис. 2), соединённых между собой последовательно или параллельно.



Полупроводниковые термоэлементы




Рис. 2. Полупроводниковые термоэлементы


В термоэлектрическом генераторе для получения электричества используется эффект Зеебека, который заключается в появлении электродвижущей силы в замкнутой цепи из двух разнородных материалов, если места контактов поддерживаются при разных температурах. Возникновение эффекта связано с тем, что энергии свободных электронов или дырок в полупроводниковом материале зависят от температуры (рис. 3).



Движение электронов и дырок в материале при нагреве


Рис. 3. Движение электронов и дырок в материале при нагреве



Появление термоЭДС в замкнутой цепи


Рис. 4. Появление термоЭДС в замкнутой цепи из двух разнородных материалов, если места контактов имеют разные температуры


В местах контактов различных материалов заряды переходят от проводника, где они имели более высокую энергию, в проводник с меньшей энергией зарядов. Если один контакт нагрет больше, чем другой, то разность энергий зарядов между двумя веществами больше на горячем контакте, чем на холодном, в результате чего в замкнутой цепи возникает ток (рис. 4). В состав термоэлектрических генераторов входят термобатареи, набранные из полупроводниковых термоэлементов, соединенных последовательно или параллельно и теплообменники горячих и холодных спаев термобатарей. Принципиальная схема электрической цепи полупроводникового термоэлектрического генератора включает в себя полупроводниковый термоэлемент, состоящий из ветвей (вырезанных из кристаллов небольших прямоугольных элементов) p- и n-типа проводимости, то есть обладающими разными знаками коэффициента термоэлектродвижущей силы, коммутационные пластины горячего и холодного спаев и активную нагрузку (рис. 5).



Устройство полупроводниковых термоэлементов



Устройство полупроводниковых термоэлементов




Рис. 5. Устройство полупроводниковых термоэлементов


В момент замыкания термоэлемента на внешнюю нагрузку в цепи течет постоянный ток, обусловленный эффектом Зеебека (рис. 6).


Этот же ток вызовет выделение и поглощение теплоты Пельтье на спаях p- и n- ветвей термоэлемента с металлическими пластинами. Это  движение носителей происходит от горячих спаев к холодным, что соответствует поглощению на горячих спаях теплоты Пельтье.



Эффект Зеебека


Рис. 6. Эффект Зеебека


Эффект Зеебека - возникновение ЭДС (термоЭДС)в электрической цепи, состоящей из последовательно соединенных разнородных проводников, контакты между которыми находятся при разных температурах. Открыт в 1821 году немецким физиком Томасом Иоганном Зеебеком (Seebeck).


Эффект Зеебека состоит в том, что в электрической цепи, составленной из разных проводников (М1 и М2), возникает термоЭДС, если места контактов (А, В) поддерживаются при разных температурах. Если цепь замкнута, то в ней течет электрический ток (термоток Iт), причем изменение знака у  разности температур спаев сопровождается изменением направления термотока.


Цепь, составленная из двух различных проводников (M1, М2), называется термоэлементом (пли термопарой), а ее ветви - термоэлектродами.


 


Полупроводниковые материалы, использующиеся в таких генераторах, должны иметь как можно больший коэффициент термоЭДС, хорошую электропроводность и, для того, чтобы получить значительный перепад температуры между холодными и горячими спаями кристаллов, малую теплопроводность. Этим требованиям лучше всего удовлетворяют сильно легированные полупроводниковые материалы. КПД термоэлемента определяется температурами горячего и холодного спаев и свойствами материалов, из которых выполнен термоэлемент - их термоэлектродвижущей силой на 1 градус, теплопроводностью и удельным электрическим сопротивлением. На величину КПД термоэлемента оказывает также влияние отношение величины его внутреннего омического сопротивления к сопротивлению присоединенной внешней нагрузки.


Чаще всего для изготовления термоэлементов применяют твердые растворы на основе халькогенидов элементов V группы. Так как для работы в термоэлектрическом генераторе не нужна высокая чистота применяемых материалов, то генераторы бывают относительно дешевы и успешно работают в условиях проникающей радиации. Для разогрева таких генераторов могут быть использованы: - побочная теплота - солнечный свет, стенка разогревающейся при работе установки (рис. 7); теплота от специального генератора - газовой или керосиновой горелки, атомного реактора (рис. 8).



Использование теплоты солнечного излучения


Рис. 7. Использование теплоты солнечного излучения






Использование теплоты от специального генератора



Использование теплоты от специального генератора


Рис. 8. Использование теплоты от специального генератора


Термоэлектрические генераторы применяются для энергоснабжения удаленных и труднодоступных потребителей электроэнергии -автоматических маяков, навигационных буев, метеорологических станций, активных ретрансляторов, космических аппаратов, станций антикоррозионной защиты газо- и нефтепроводов (рис. 9-10).



энергопечь позволяющая получать электроэнергию


Рис. 9. Реклама энергопечи, позволяющей получать электроэнергию



Термоэлектрическое нагревательное устройство для космонавтов


Рис. 10. Термоэлектрическое нагревательное устройство для космонавтов


Термоэлектрические генераторы обладают рядом преимуществ перед традиционными электромашинными преобразователями энергии, например турбогенераторами, отсутствием движущихся частей, бесшумностью работы, компактностью, легкостью регулировки, малой инерционностью. Недостатком термоэлектрических генераторов является низкий КПД – от 1% до 10% (рис. 8.86).


 


Проблема ограничения КПД


Особенностью существующих термопар является большое внутреннее сопротивление термопары как источника ЭДС, вызванные большой длиной и малым поперечным сечением ветвей термопары:


r = p1l1/s1 + p2I2/s2


где p1 и р2; 11 и l2; s1 и s2 — удельное сопротивление, длина и площадь поперечного сечения ветвей термопары. Это же является причиной и большого термического сопротивления для теплового потока через ветви термопары, часть энергии которого и преобразуется в электричество. Такая особенность приводит к тому, что КПД современных термоэлементов не превышает 1 % для металлических и 5-7% для полупроводниковых термопар при значительных перепадах температур, и не позволяет получить большие мощности термоэлектрических преобразователей. Для улучшения системы надо оптимизировать соотношения р, l и s.


 


Несмотря на это термоэлектрические генераторы нашли широкое применение для питания переносных устройств электроники, что объясняется простотой их эксплуатации, высокой надежностью и относительно небольшой стоимостью.


Термоэмиссионные методы преобразования теплоты в электрическую энергию


Термоэмиссионный преобразователь – это преобразователь тепловой энергии в электрическую на основе использования эффекта термоэлектронной эмиссии. Представляет собой ламповый диод, к эмиттеру которого подводится теплота, нагревая его до высокой температуры. Для нейтрализации влияния поля объемного заряда и увеличения термоэмиссии путем снижения работы выхода катода в колбу прибора вводятся пары цезия. По сравнению с другими методами преобразования тепловой и химической энергии в электрическую термоэмиссионный метод имеет следующие преимущества: самые низкие весовые характеристики на единицу выходной мощности и возможность работы при высокой температуре холодильника (анода), отсутствие в них движущихся частей, высокая надёжность, компактность, возможность эксплуатации без систематического обслуживания.





Схема простейшего термоэмиссионного устройства показана на рис. 11. Преобразователь состоит из двух электродов: К - катода, нагреваемого от постороннего источника тепла до Т1 ≈ 1400 °К, и А -анода, от которого отводится теплота холодному источнику при температуре Т2 ≈ 700 °К. При T1 >T2 электроны при высокой температуре катода начинают эмиссировать в межэлектродное пространство по направлению к аноду. Количество энергии выхода при эмиссии их с катода больше выделяемой при оседании электронов на холодном аноде. Эту разницу в энергии используют во внешней цепи и тем самым превращают теплоту в электричество. Межэлектродное пространство играет в устройстве этого типа большое значение. Для увеличения количества тепла, превращаемого в электричество, в межэлектродном пространстве, создают вакуум, но при этом в нем образуется пространственный заряд, т. е. скопление электронов, тормозящих их движение.



Схема термоэмиссионного устройства


Рис. 11. Схема термоэмиссионного устройства


Для уменьшения влияния пространственного заряда расстояние между электродами уменьшают до ~1-10 мкм. Дополнительно нейтрализацию пространственного заряда можно обеспечить, добавляя в находящееся под вакуумом межэлектродное пространство пары щелочных металлов (цезия и др.). В этом случае межэлектродное пространство начинает ионизироваться и эмиссия электронов увеличивается.



Другие статьи:

МГД-генератор. Магнитогидродинамические генераторы.
Тепловой насос. Устройство, виды, принцип действия теплового насоса.
Холодильные машины и установки. Устройство, виды, принцип действия холодильных машин.