Молниезащита
Другое
Статьи / Другое / МГД-генератор. Магнитогидродинамические генераторы.
  19.02.17  |  

МГД-генератор. Магнитогидродинамические генераторы.

Магнитогидродинамические генераторы (МГД-генераторы)


Больше других разработан метод магнитогидродинамического превращения теплоты в электрическую энергию, который можно использовать в крупной стационарной энергетике. В принципе этот метод основан на известном явлении, заключающемся в том, что при пересечении проводником магнитных силовых линий в нем наводится электродвижущая сила. Сильно ионизированный газ при достаточно большой электропроводности его и высокой температуре обладает таким же свойством, которое и используется в магнитогидродинамическом (МГД) методе превращения теплоты в электрическую энергию.



Сравнение турбогенератора и МГД-генератора


Рис. 1. Сравнение турбогенератора и МГД-генератора





- В турбогенераторе внутренняя энергия газа преобразуется в кинетическую энергию пропеллера (ротора), а затем кинетическая энергия движущегося твердого проводника - в электрическую энергию


- В МГД генераторе движущейся газ сам является проводником. В результате внутренняя энергия электропроводного газа преобразуется в электрическую энергию.


- Движение проводников поперек магнитного поля приводит в обоих случаях к возникновению ЭДС и тока в соответствии с законом индукции Фарадея



Принцип действия МГД-генератора


Рис. 2. Принцип действия МГД-генератора: 1 обмотка электромагнита; 2 — камера сгорания; 3 присадка; 4 — воздух; 5 — топливо; 6 — сопло; 7 — электроды с последовательно включенной нагрузкой; 8 — выход продуктов сгорания.


В качестве рабочего тела в МГД-генераторе могут быть использованы, например, продукты сгорания топлива. Но поскольку они и при высоких температурах не обладают достаточной электрической проводимостью, ее приходится увеличивать или, другими словами, повышать степень ионизации газов присадкой к ним небольшого количества (~1%) щелочных металлов (калия, цезия и др.). Наилучшие результаты можно получить при применении плазмы, являющейся нейтральной смесью ионов, электронов и нейтральных частиц (квазинейтральной средой) при очень высоких температурах.


На принципиальной схеме МГД-генератора (рис. 3) топливо -горючий газ (но может быть и любое другое) подается под давлением по газопроводу в топочную камеру 1, работающую под давлением.



Принципиальная схема МГД-генератора


Рис. 3. Принципиальная схема МГД-генератора


Одновременно в топочную камеру подается присадка (цезий) для повышения степени ионизации продуктов сгорания. Ионизацию газа можно обеспечить и при помощи внешнего высокочастотного источника мощности. Но в этом случае энергия, расходуемая на высокочастотный источник, снижает общий КПД установки. Нужный для сгорания топлива воздух поступает в установку 12, где в нем повышают содержание кислорода. Обогащенный воздух проходит в компрессор 11 и направляется в воздухоподогреватель 6, из которого по воздухопроводу 5 поступает в топочную камеру 1. Рост в воздухе содержания кислорода и его нагрев до высокой температуры перед топочной камерой повышают температуру продуктов сгорания, покидающих камеру 1.





Высокотемпературные ионизированные продукты сгорания движутся с большой скоростью по каналу 4. В поперечном направлении к движению газов электромагнитом 3 создается мощное магнитное поле. При пересечении ионизированными газами магнитного поля в них возникает электродвижущая сила, а на электродах 2 - соответствующая разность электрических потенциалов. Часть электрической энергии расходуется электромагнитом на возбуждение магнитного поля, а другая часть ее, полученная в МГД-генераторе, поступает в преобразователь 10 постоянного тока на переменный. Температура газов после МГД-генератора очень высока (более 2000 °С), поэтому их теплоту целесообразно использовать в обычной теплосиловой установке, как это показано на рис. 3.


Продукты сгорания после МГД-генератора и частичного охлаждения в воздухоподогревателе 6 направляются в котельный агрегат, состоящий из экономайзерно-испарительной поверхности нагрева 5 и пароперегревателя 7, а затем охлажденные продукты сгорания удаляют в атмосферу через дымовую трубу 9.


Перегретый пар после котельного агрегата 7-8 направляется в паровую турбину 13, после расширения в которой поступает в охлаждаемый водой конденсатор 14. Конденсат из конденсатора 14 насосом 15 снова закачивается в котельный агрегат. Турбина 13 приводит в действие компрессор, служащий для сжатия до необходимого давления обогащенного воздуха, и электрический генератор 16 переменного тока, работающий параллельно с преобразователем 10, и суммарная электрическая энергия, вырабатываемая МГД-генератором и нормальным электрическим генератором, направляется к ее потребителям.


Эффективность МГД-генератора зависит от интенсивности магнитного поля, создаваемого электромагнитом. Стоимость электромагнита высока и он расходует большое количество электрической энергии.


Присутствие в горячих продуктах сгорания топлива активных присадок (цезия) вызывает коррозию электродов и обмуровки газоходов и нужны коррозионностойкие материалы для МГД-генераторов. Совместная установка МГД-генератора и нормальной теплоэнергетической установки (рис. 4) повысит суммарный коэффициент использования теплоты топлива минимум на 10%.



Схема энергетической установки с МГД-генератором


Рис. 4. Схема энергетической установки с МГД-генератором



Процессы, происходящие при работе МГД-генератора


Рис. 5. Процессы, происходящие при работе МГД-генератора



Фото МГД-генератора «Хибины» на Кольском полуострове




Рис. 6. Фото МГД-генератора «Хибины» на Кольском полуострове



Устройство МГД-генератора


Рис. 7. Устройство МГД-генератора



Изменение мощности МГД-генератора


Рис. 8. Изменение мощности МГД-генератора (по зарубежным данным)



Другие статьи:

Тепловой насос. Устройство, виды, принцип действия теплового насоса.
Холодильные машины и установки. Устройство, виды, принцип действия холодильных машин.
Компрессор. Принцип действия, устройство, виды компрессоров.