Молниезащита
Другое
Статьи / Другое / Ультразвук и ультразвуковые установки. Виды ультразвуковых установок.
  08.11.16  |  

Ультразвук и ультразвуковые установки. Виды ультразвуковых установок.

В основе данного способа обработки лежит механическое воздействие на материал. Ультразвуковым он называется потому, что частота ударов соответствует диапазону неслышимых звуков ( f = 6-105кГц ).


Звуковые волны представляют собой механические упругие колебания, которые могут распространяться только в упругой среде.


При  распространении звуковой  волны  в  упругой  среде  материальные частицы совершают упругие колебания около своих положений со скоростью, которая называется колебательной.


Сгущение и разряжение среды в продольной волне характеризуется избыточным, так называемым звуковым давлением.


Скорость распространения звуковой волны зависит от плотности среды, в которой она движется. При распространении в материальной среде звуковая волна переносит энергию, которая может использоваться в технологических процессах.





Достоинства ультразвуковой обработки:


-    возможность получения акустической энергии различными техническими приёмами;


-       широкий  диапазон применения ультразвука (от размерной обработки до сварки, пайки и т. д.);


-       простота автоматизации и эксплуатации;


Недостатки:


-       повышенная  стоимость  акустической  энергии  по  сравнению  с другими видами энергии;


-       необходимость изготовления генераторов ультразвуковых колебаний;


-    необходимость изготовления специальных инструментов со специальными свойствами и формой.


Ультразвуковые колебания  сопровождаются рядом  эффектов,  которые могут быть использованы как базовые для разработки различных процессов:


-       кавитация, т. е. образование в жидкости пузырьков и лопание их.


При этом возникают большие местные мгновенные давления, достигающие 108Н/м2;


-       поглощение ультразвуковых колебаний веществом, в котором часть энергии превращается в тепловую, а часть расходуется на изменение структуры вещества.


Эти эффекты используются для:


-       разделения молекул  и  частиц  различной  массы  в  неоднородных суспензиях;


-       коагуляции (укрупнения) частиц;


-      диспергирования (дробления) вещества и перемешивания его с другими;


-     дегазации  жидкостей  или  расплавов  за  счёт  образования всплывающих пузырьков больших размеров.


 


1.1. Элементы ультразвуковых установок


Любая ультразвуковая установка (УЗУ) включает в себя три основных элемента:


-       источник ультразвуковых колебаний;


-       акустический трансформатор скорости (концентратор);


-       детали крепления.


Источники ультразвуковых колебаний (УЗК) могут быть двух видов – механические и электрические.


Механические преобразуют механическую энергию, например, скорость движения жидкости или газа. К  ним относятся ультразвуковые сирены или свистки.


Электрические источники УЗК преобразуют электрическую энергию в механические упругие колебания соответствующей частоты. Преобразователи бывают электродинамические, магнитострикционные и пьезоэлектрические.





Наибольшее распространение получили магнитострикционные и пьезоэлектрические преобразователи.


Принцип действия магнитострикционных преобразователей основан на продольном магнитострикционном эффекте, который проявляется в изменении длины металлического тела из ферромагнитных материалов (без изменения их объёма) под действием магнитного поля.


Магнитострикционный эффект у различных материалов различен. Высокой магнитострикцией обладают никель и  пермендюр (сплав железа  с кобальтом).


Пакет магнитострикционного преобразователя представляет собой сердечник из тонких пластин, на котором размещена обмотка для возбуждения в нём переменного электромагнитного поля высокой частоты.


Принцип действия пьезоэлектрических преобразователей основан на способности некоторых веществ изменять свои геометрические размеры (толщину и объём) в электрическом поле. Пьезоэлектрический эффект обратим. Если пластину из пьезоматериала подвергнуть деформации сжатия или растяжения, то на её гранях появятся электрические заряды. Если пьезоэлемент поместить в переменное электрическое поле, то он будет деформироваться, возбуждая в окружающей среде ультразвуковые колебания. Колеблющаяся пластинка из  пьезоэлектрического материала является  электромеханическим преобразователем.


Широкое  распространение получили  пьезоэлементы  на  основе  титана бария, цирконата-титана свинца.


Акустические трансформаторы скорости (концентраторы продольных упругих колебаний) могут иметь различную форму (рис. 1.1).





Рис. 1.1. Формы концентраторов


Они служат для согласования параметров преобразователя с нагрузкой, для крепления колебательной системы и ввода ультразвуковых колебаний в зону обрабатываемого материала. Эти устройства представляют собой стержни различного сечения, выполненные из материалов с коррозионной    и кавитационной   стойкостью,   жаростойкостью,   стойкостью   к   агрессивным средам.


 


1.2. Технологическое использование ультразвуковых колебаний


В промышленности ультразвук используется по трём основным направлениям: силовое воздействие на материал, интенсификация и ультразвуковой контроль процессов.


Силовое воздействие на материал


Применяется для механической обработки твёрдых и сверхтвёрдых сплавов, получения стойких эмульсий и т. п.


Наиболее часто применяются две разновидности ультразвуковой обработки на характерных частотах 16–30 кГц:


-       размерная обработка на станках с применением инструментов;


-       очистка в ваннах с жидкой средой.


Основным рабочим механизмом ультразвукового станка является акустический  узел  (рис. 1.2).  Он  предназначен  для   приведения  рабочего инструмента в колебательное движение. Акустический узел получает питание от генератора электрических колебаний (обычно ламповый), к которому подключается обмотка 2.


Главным элементом акустического узла является магнитострикционный (или пьезоэлектрический) преобразователь энергии электрических колебаний в энергию механических упругих колебаний – вибратор 1.








Рис. 1.2. Акустический узел ультразвуковой установки


Колебания вибратора, который переменно удлиняется и укорачивается с ультразвуковой  частотой  в  направлении  магнитного  поля  обмотки, усиливаются концентратором 4, присоединённым к торцу вибратора.


К концентратору крепится стальной инструмент 5 так, чтобы между его торцом и обрабатываемой деталью 6 оставался зазор.


Вибратор помещается в эбонитовый кожух 3, куда подаётся проточная охлаждающая вода.


Инструмент должен иметь форму заданного сечения отверстия. В пространство между торцом инструмента и обрабатываемой поверхностью детали из  сопла 7  подаётся жидкость с  мельчайшими зёрнами абразивного порошка.


От колеблющегося торца инструмента зёрна абразива приобретают большую скорость, ударяются о поверхность детали и выбивают из неё мельчайшую стружку.


Хотя производительность каждого удара ничтожно мала, производительность установки относительно высока, что обусловлено высокой частотой колебаний инструмента (16–30 кГц) и большим количеством зёрен абразива, движущихся одновременно с большим ускорением.


По  мере  снятия слоёв материала производится автоматическая подача инструмента.


Абразивная жидкость подаётся в зону обработки под давлением и вымывает отходы обработки.


С   помощью   ультразвуковой   технологии   можно   выполнять   такие операции, как прошивка, долбление, сверление, резание, шлифование и другие.


Ультразвуковые ванны (рис. 1.3) применяются для очистки поверхностей металлических деталей от продуктов коррозии, плёнок окислов, минеральных масел и др.


Работа ультразвуковой ванны основана на использовании эффекта местных гидравлических ударов, возникающих в жидкости под действием ультразвука.


Принцип действия такой ванны состоит в следующем: обрабатываемая деталь (1) погружается в бачок (4), заполненный жидкой моющей средой (2). Излучателем ультразвуковых колебаний является диафрагма (5), соединённая с магнитострикционным вибратором (6) с помощью клеящего состава (8). Ванна установлена на подставке (7). Волны ультразвуковых колебаний (3) распространяются в рабочей зоне, где производится обработка.




Рис. 1.3. Ультразвуковая ванна


Наиболее эффективна ультразвуковая очистка при удалении загрязнений из  труднодоступных полостей,  углублений  и  каналов  небольших  размеров. Кроме того, этим методом удаётся получить стойкие эмульсии таких несмешивающихся обычными способами жидкостей как вода и масло, ртуть и вода, бензол и другие.


Аппаратура УЗУ сравнительно дорога, поэтому экономически целесообразно применять ультразвуковую очистку небольших по размеру деталей только в условиях массового производства.


 


Интенсификация технологических процессов





Ультразвуковые колебания существенно изменяют ход некоторых химических процессов. Например, полимеризация при определённой силе звука идёт  более  интенсивно.  При  снижении  силы  звука  возможен  обратный процесс –    деполимеризация.    Поэтому    это    свойство    используется    для управления реакцией полимеризации. Изменяя частоту и интенсивность ультразвуковых колебаний, можно обеспечить требуемую скорость реакции.


В металлургии введение упругих колебаний ультразвуковой частоты в расплавы приводит к существенному измельчению кристаллов и ускорению образования наростов в  процессе кристаллизации, уменьшению пористости, повышению механических свойств затвердевших расплавов и снижению содержания газов в металлах.


 


Ультразвуковой контроль процессов


С помощью ультразвуковых колебаний можно непрерывно контролировать ход технологического процесса без проведения лабораторных анализов проб. Для этой цели первоначально устанавливается зависимость параметров  звуковой  волны   от   физических  свойств   среды,   а   затем   по изменению этих параметров после действия на среду с достаточной точностью судят о её состоянии. Как правило, применяются ультразвуковые колебания небольшой интенсивности.


По изменению энергии звуковой волны можно контролировать состав различных смесей, не являющихся химическими соединениями. Скорость звука в  таких  средах  не  изменяется,  а  наличие  примесей  взвешенного  вещества влияет на коэффициент поглощения звуковой энергии. Это даёт возможность определить процентное содержание примесей в исходном веществе.


По отражению звуковых волн на границе раздела сред («просвечивание» ультразвуковым лучом) можно определить наличие примесей в  монолите и создать приборы ультразвуковой диагностики.


Выводы: ультразвук – упругие волны с частотой колебаний от 20 кГц до 1 ГГц, не слышимые человеческим ухом. Ультразвуковые установки широко используют для обработки материалов за счет высокочастотных акустических колебаний.



Другие статьи:

Электролиз. Промышленные электролизные установки.
Дуговые печи и установки. Виды дуговых плавильных печей.
Электрическая сварка. Виды сварки. Сварочные аппараты и машины.