Молниезащита
Высоковольтная техника
Статьи / Высоковольтная техника / Выключатели автоматические. Типы, виды, устройство, работа автоматических выключателей.
  30.01.12  |  

Выключатели автоматические. Типы, виды, устройство, работа автоматических выключателей.

Выключатели автоматические предназначены для проведения тока в нормальных режимах и автоматического отключения защищаемой цепи при коротких замыканиях (КЗ) и перегрузках, а также для оперативных нечастых отключений.

В отличие от высоковольтных выключателей, конструкция которых содержит контактные, дугогасительные и приводные системы и не содержит устройства измерений и контроля защищаемых цепей (эти устройства выполняются на низком напряжении в виде отдельных аппаратов), автоматические выключатели низкого напряжения, как правило, содержат как узлы конструкции и устройства измерений и контроля заданных параметров защищаемой цепи.

Конструкции, характеристики и защитные функции автоматических выключателей весьма разнообразны. Однако по назначению и принципам конструирования они могут быть разделены на выключатели общего назначения, быстродействующие и специальные.

Выключатели автоматические общего назначения. Эти выключатели по роду тока главной цепи выполняются переменного, постоянного, переменного и постоянного тока.

По собственному времени отключения выключатели могут быть токоограничивающими и нетокоограничивающими.

Общая продолжительность короткого замыкания tк.з., (рис. 4-1, а и б) складывается из трех слагаемых:

to - времени от начала короткого замыкания до момента, когда ток достигает значения Iуст, при котором в стационарном режиме срабатывает выключающее устройство;

tоткл ~ собственного времени отключения — времени от момента достижения током значения уставки до момента начала расхождения контактов;

tr — длительности процесса дугогашения.

Время tо зависит в основном от постоянных цепи. Время tоткл определяет быстродействие- выключателя.

Токоограничивающий выключатель выключатель, у которого собственное время отключения таково, что в данной цепи за это время ток не успевает достигнуть установившегося значения Iк.з. и отключаемый ток Iоткл меньше того, который был бы в цепи в случае отсутствия выключателя или при нетокоограничивающем выключателе (рис. 4-1, а). На рис. 4-1, в как пример приведены токоограничивающие характеристики некоторых выключателей серии А-3700. Здесь Iк.з. — возможный ток короткого замыкания; Iоткл — отключаемый выключателем ток (ограниченный); прямая 1 - ток, который отключал бы нетокоограничивающий выключатель.

 

Процесс отключения при коротком замыкании нетокоограничивающим выключателем и токоограничивающим выключателем

 

Рис. 4-1. Процесс отключения при коротком замыкании: а – нетокоограничивающим выключателем; б и в – токоограничивающим выключателем.

 

Нетокоограничивающие выключатели могут быть с выдержкой времени в зоне токов короткого замыкания или без нее. Первые предназначены для осуществления селективной защиты, суть которой заключается в том, что при токе Iк.з. (рис. 4-2), превосходящем ток уставки Iycт выключателей всех ступеней, отключается ближайший к месту аварии участок, у которого выключатель имеет меньшую выдержку времени t1 (t1

Выключатели автоматические быстродействующие (до настоящего времени это выключатели постоянного тока). Выключатели предназначены для защиты полупроводниковых преобразователей, электрических машин и линий постоянного тока при коротких замыканиях, перегрузках и обратных токах в промышленных установках (например, в электроприводах прокатных станов) и в установках магистрального, промышленного и городскрго электрифицированного транспорта.

 

Схема силективной защиты.

 

Рис. 4-2. Схема силективной защиты.

В указанных современных установках, в частности в установках с полупроводниковыми преобразователями, токи КЗ достигают 200-300 кА. Полупроводниковые устройства в отличие от электрических машин не допускают перегрузок. В силу их природы интеграл Джоуля у них много ниже, чем у электрических машин и других электромеханических устройств. Все это требует ускоренного отключения аварийного участка и огра­ничения тока в цепи.

Следует учесть еще одно весьма важное обстоятельство — наличие громадных  электродинамических сил, возникающих при указанных токах. Например, в цепи, в которой ток КЗ может достигнуть установившегося значения 300 кА, при начальной скорости (крутизне) нарастания 4,5 • 106 А/с выключателю с временем отключения toткл = 0,08 с приходится отключать ток 280 кА, при tоткл = 0,04 с - ток 160 кА, а быстродействующему выключателю с tоткл = 0,005 с — ток около 22 кА. Электродинамические силы здесь ограничиваются в 50—150 раз.

По защитным характеристикам нашими стандартами (ГОСТ 2585—81 Е) собственное время размыкания быстродействующего выключателя в зависимости от тока отключения и крутизны его нарастания регламентировано: 1-й класс—до 0,008 с, 2-й класс - до 0,005 с, 3-й класс - до 0,002 с.

На переменном токе номинальные токи в установках ограничиваются за счет перехода на более высокое напряжение - на 220, 380 и 660 Вив настоящее время на 1140 В. Рост мощностей установок ставит задачу создания быстродействующих выключателей и на переменном токе.

Привод. Привод служит для включения выключателя по чьей-либо команде (оператора, системы автоматического управления и др.). Выполняются выключатели с ручным или двигательным приводом либо с тем и другим. Под двигательным понимают привод, в котором сила создается любым видом энергии, кроме мускульной энергии оператора, например электромагнитом, электродвигателем, пневматикой, гидравликой и т. п. Отключение выключателя осуществляется пружинами после разъединения расцепляющего устройства.

 

Пример исполнения расцепляющего устройства автоматического выключателя

Рис. 4-3. Пример исполнения расцепляющего устройства автоматического выключателя

Расцепляющее устройство. Это устройство предназначено:

для исключения возможности удерживать контакты выключателя во включенном положении (рукояткой, дистанционным приводом) при наличии ненормального режима работы в защищаемой цепи;

для обеспечения моментного отключения, т. е. не зависящей от оператора, рода и массы привода скорости расхождения контактов.

Расцепляющее устройство представляет собой систему шарнирно-связанных рычагов, соединяющих привод включения с системой подвижных контактов, которые соединены с отключающей пружиной. Принцип работы устройства может быть пояснен схемой на рис. 4-3.

Схема на рис. 4-3, а соответствует положению «Отключено вручную» и «Выключатель взведен». «Взведен» означает, что контакты 7 и 8 разомкнуты, а фигурный рычаг 9 поставлен под зацепление 4 отключающего валика 5; это осуществляется поворотом рукоятки 1 вправо. При повороте рукоятки влево отключающая пружина 2 переведет «ломающиеся» рычаги 3 и б через мертвое положение до упора шарнира О в рычаг 9 и замкнет контакты. Положение «включено» показано на рис. 4-3,6.

В случае возникновения ненормальных условий работы в защищаемой цепи соответствующий расцепитель повернет отключающий валик и выведет его из зацепления с фигурным рычагом. Под действием отключающей пружины фигурный рычаг повернется и другим своим концом переведет «ломающиеся» рычаги вправо через мертвое положение. Отключающая пружина «изломит» рычаги и разомкнет контакты. Выключатель окажется в положении «Отключено автоматически» (рис. 4-3, в). Для повторного включения необходимо отвести рукоятку вправо и ввести в зацепление фигурный рычаг с отключающим валиком.

Конструкции расцепляющих устройств весьма разнообразны, однако действие их подобно описанному. В дальнейшем расцепляющее устройство будем изображать схематично в виде двух сцепленных рычагов.

 

Времятоковая характеристика выключателя серии ВА51

 

Рис. 4-4. Времятоковая характеристика выключателя серии ВА51

 

Следует отметить одно весьма важное обстоятельство. Отключающие и контактные пружины в автоматических выключателях развивают силы в десятки и сотни ньютонов. Система рычагов расцепляющего устройства строится так, что для расцепления требуются незначительные усилия. Это позволяет иметь легкие и высокочувствительные расцепители.

Расцепители. Это элементы, которые контролируют заданный параметр защищаемой цепи и, воздействуя на механизм расцепления, отключают выключатель при отклонении значения параметра от установленного. Они представляют собой реле или элементы реле, встроенные в выключатель с использованием его элементов или приспособленные к его конструкции. Расцепители выполняются на базе электромеханических реле. В настоящее время все большее применение находят расцепители на принципах или на базе статических реле и их элементов. При этом контролирующие и сравнивающие органы расцепителя выполняются на полупроводниковых элементах с выходом на независимый электромагнитный элемент (исполнительный орган), воздействующий на механизм расцепления.

Автоматические выключатели, как правило, снабжаются расцепителем максимального тока для защиты в зоне токов перегрузки и токов короткого замыкания или только токов короткого замыкания. Электромеханические расцепители выполняются электромагнитными, электротепловыми или комбинированными. Расцепитель максимального тока на базе статических реле состоит из блока полупроводникового (БПР), измерительных элементов, встраиваемых в каждый полюс выключателя, и выходного электромагнитного элемента. Измерительными элементами служат на переменном токе трансформаторы тока, на постоянном токе — шунты или трансформаторы постоянного тока. Независимо от принципа устройства расцепители могут выполняться без выдержки времени при срабатывании, с независимой от тока выдержкой времени, с обратнозависимой от тока выдержкой времени. Типичная времятоковая характеристика современного выключателя приведена на рис. 4-4. Полупроводниковый расцепитель, более сложный по устройству, позволяет получить более благоприятные времятоковые характеристики. Пример схемы и устройства такого расцепителя рассмотрен ниже, в разделе 4.

Выключатели могут дополнительно снабжаться расцепителями:

независимым — для дистанционного отключения выключателя при подаче на расцепитель соответствующего напряжения;

минимального или нулевого напряжения — для автоматического отключения выключателя при снижении ниже определенного уровня или исчезновении напряжения.

Могут быть и другого вида расцепители.

Схема выключателя с расцепителем максимального тока мгновенного действия показана на рис. 4-5, а. Токоведущую шину 1 полюса выключателя охватывает магнитопровод, состоящий из сердечника 2 и якоря 3. Когда ток станет выше определенного значения, тяговое усилие превысит усилие пружины 5, якорь притянется и повернет отключающий валик 4. Расцепляющее устройство освободится. Выключатель отключится. Регулирование тока срабатывания осуществляется натягом пружины 5.

 

Примеры схем некоторых электромеханических расципителей

 

Рис. 4-5. Примеры схем некоторых электромеханических расципителей.

 

Расцепитель минимального напряжения (рис. 4-5,б) состоит из электромагнита — сердечника 2, якоря 4 и катушки 3, подключенной на контролируемое напряжение. При нормальных режимах якорь притянут. При снижении контролируемого напряжения ниже определенного значения (уставки) якорь под действием регулировочной (она же и отключающая) пружины 5 отпадет и, воздействуя на расцепляющее устройство через защелку б, отключит выключатель. Магнитная система рас-цепителя выполняется так, что МДС катушки при номинальном напряжении недостаточна для притяжения якоря, но достаточна для его удержания. Якорь при­тягивается при подготовке выключателя к включению при помощи рычагов 1, связанных с валом выключателя.

Расцепитель напряжения независимый (рис. 4-5, в) представляет собой электромагнит, который притягивает свой якорь при включении катушки на соответствующее напряжение. Своим концом якорь воздействует на расцепляющее устройство и отключает выключатель.

Пример исполнения комбинированного (электротеплового и электромагнитного) расцепителя приведен на рис. 4-6. При перегрузках срабатывает электротепловой расцепитель: биметаллическая пластинка 2 вследствие нагрева изгибается и винтом 3 поворачивает отключающий валик 4. При коротком замыкании срабатывает электромагнитный расцепитель, состоящий из сердечника 7 и якоря 5, охватывающих токопровод 6. Электромагнитный расцепитель воздействует на тот же отключающий валик. Для ограничения тока через биметаллическую пластинку служит шунт 1.

 

Схема комбинированного (электротеплового и электромагнитного) расцепителя

Рис. 4-6. Схема комбинированного (электротеплового и электромагнитного) расцепителя.

 

<


Другие статьи:

Разрядник. Типы, виды, устройство высоковольтных разрядников.
Токоограничивающие реакторы. Типы, виды, устройство, расчет токоограничивающих реакторов.
Вакуумные выключатели. Типы, виды, устройство, работа вакуумных выключателей