Молниезащита
Другое
Статьи / Другое / Топливо и основы теории горения. Конструкции топок.
  06.02.17  |  

Топливо и основы теории горения. Конструкции топок.

1. Общие сведения


Органическое топливо (газообразное, жидкое и твердое) широко используют в разного рода тепловых установках: в топках паровых и водогрейных котлов, в том числе паротурбинных электростанций, в промышленных печах и в сельском хозяйстве, в камерах сгорания газовых турбин и воздушно-реактивных двигателей, в цилиндрах поршневых двигателей внутреннего сгорания, в камерах сгорания магнитогазодинамических электрогенераторов и т. д.


Топливо в любых теплотехнических установках сжигают для того, чтобы получить теплоту в результате протекания экзотермических химических реакций и получить раскаленные продукты полного сгорания (дымовые газы) или продукты газификации.


В топках паровых котлов, в промышленных печах (кроме шахтных печей), в двигателях внутреннего сгорания, в камерах сгорания газовых турбин горение ведут с наибольшей полнотой, получая продукты полного сгорания.





В газогенераторах осуществляют газификационные процессы, в которых в качестве окислителей используют кислород, воздух, водяной пар и углекислый газ. Реакции, протекающие в таких устройствах, едины по своей природе с реакциями горения, но в результате их получают горючие газообразные продукты газификации.


Бывает и двухстадийное сжигание топлива: 1 - сначала топливо газифицируется; 2 - затем (в том же устройстве) продукты газификации полностью дожигаются.


Условия сгорания топлива в разных теплотехнических устройствах и подготовка их к сжиганию различны, как различны и сами топлива. Например, в топках паровых и водогрейных котлов и в промышленных печах топливо сгорает при атмосферном давлении, в то время как в камерах сгорания газовых турбин и в цилиндрах двигателей внутреннего сгорания топливо горит при давлении, во много раз превышающем атмосферное. Несмотря на указанное выше различие, в процессах сгорания различных видов топлива много общего. Краткая информация о процессах горения и топливных устройствах изложена ниже.


2. Реакции горения и газификации


Процессы горения делят на гомогенные, протекающие в объеме, когда топливо и окислитель находятся в одинаковом фазовом состоянии (например, горение водорода в смеси с воздухом), и на гетерогенные, происходящие на поверхности твердого углерода (например, горение кокса в потоке воздуха). В указанных реакциях горения окислителем является сухой воздух, состоящий по объему примерно из 21% кислорода и 79% азота, и поэтому продукты сгорания содержат балласт - азот, который их разбавляет. При использовании в качестве окислителя чистого кислорода балласт будет отсутствовать.


3. Гомогенное горение. Кинетика химических реакций


Во всех теплотехнических установках стремятся к проведению процессов горения с наибольшей скоростью, потому что это позволяет создать малогабаритные машины и аппараты и получить в них наибольшую производительность. Процессы горения в существующих установках протекают с большой скоростью с выделением при сгорании топлива большого количества теплоты и с получением высоких температур. Для лучшего понимания влияния разных факторов на скорость горения ниже рассмотрены элементы кинетики химических реакций.





Скорость любой химической реакции зависит от концентрации реагирующих веществ, температуры и давления. Объясняется это тем, что молекулы газов, двигаясь в разных направлениях с большой скоростью, сталкиваются друг с другом. Чем чаще их столкновения, тем быстрее протекает реакция. Частота же столкновений молекул зависит от их количества в единице объема, т. е. от концентрации и, кроме того, от температуры. Под концентрацией понимают массу вещества в единице объема и измеряют ее в кг/м3, а чаще - числом киломолей в 1 м3.


4. Особенности горения газообразного топлива


Процесс горения газообразного топлива гомогенный, т. е. и топливо, и окислитель находятся в одном агрегатном состоянии и граница раздела фаз отсутствует. Для того, чтобы началось горение, газ должен соприкасаться с окислителем. При наличии окислителя для начала горения необходимо создать определенные условия. Окисление горючих составляющих возможно и при относительно низких температурах. В этих условиях скорости химических реакций имеют незначительную величину. С повышением температуры скорость реакций возрастает.


При достижении некоторой температуры газо-воздушная смесь воспламеняется, скорости реакций резко возрастают и количество теплоты становится достаточным для самопроизвольного поддержания горения. Минимальная температура, при которой происходит воспламенение смеси, называется температурой воспламенения. Значение этой температуры для различных газов неодинаково и зависит от теплофизических свойств горючих газов, содержания горючего в смеси условий зажигания, условий отвода теплоты в каждом конкретной в устройстве и т. д. Например, температура воспламенения водорода находится в пределах 820-870 К, а окиси углерода и метана - соответственно 870-930 К и 10201070 К.


Горючий газ в смеси с окислителем сгорает в факеле. Факел - некоторый определенный объем движущихся газов, в котором протекают процессы горения. В соответствии с общими положениями теории горения различают два принципиально различных метода сжигания газа в факеле - кинетически и диффузионный. Для кинетического сжигания характерно предварительное (до начала горения) смешивание газа с окислителем. Газ и окислитель подаются сначала в смешивающее устройство горелки. Горение смеси осуществляется вне пределов смесителя. В этом случае скорость процесса будет лимитироваться скоростью химических реакций горения и
τгор, τхим.


Диффузионное горение происходит в процессе смешивания горючего газа с воздухом. Газ поступает в рабочий объем отдельно от воздуха. Скорость процесса в данном случае будет ограничена скоростью смешивания газа с воздухом и τгор < τфиз.


Разновидностью диффузионного горения является смешанное (диффузионно-кинетическое) горение. Газ предварительно смешивается с некоторым (недостаточным для полного горения) количеством воздуха. Этот воздух называется первичным. Образовавшаяся смесь подается в рабочий объем. Туда же отдельно от нее поступает остальная часть воздуха (вторичный воздух).


В топках котельных агрегатов чаще используются кинетический и смешанный принципы сжигания топлива. Диффузионный способ чаще всего используется в технологических промышленных печах.





Структура и длина факела при прочих равных условиях зависит от режима потока. Различают ламинарный и турбулентный газовые факелы. Ламинарный факел образуется при небольших скоростях истечения смеси (Re < 2300). Ламинарный режим сохраняется только на некотором расстоянии от среза горелки. Затем из-за процессов массообмена с окружающей средой происходит турбулизация факела. При Re > 3000 факел турбулентен уже около среза горелочного устройства. 


Горение газа происходит в узкой зоне, называемой фронтом горения. Газ, предварительно перемешанный с окислителем, сгорает во фронте горения, который называется кинетическим. Этот фронт представляет собой поверхность раздела между свежей газо-воздушной смесью и продуктами сгорания. Площадь поверхности кинетического фронта горения определяется скоростью химических реакций.


В случае диффузионного сжигания газа образуется диффузионный фронт горения, который является поверхностью раздела между продуктами сгорания и смесью газа с продуктами сгорания, диффундирующими навстречу потоку газа. Площадь поверхности этого фронта определяется скоростью смешивания газа с окислителем.


Диффузионно-кинетическое сжигание газа характеризуется наличием двух фронтов. При кинетическом сжигании расходуется окислитель, подаваемый в смеси с газом, при диффузионном догорает та часть газа, которая не сгорела при кинетическом сжигании из-за недостатка окислителя.


На рис. 1 показана структура горящих факелов при различных способах сжигания горючего газа и схема фронта горения.



Структура фронта горения факелов


Рис. 1. Структура фронта горения факелов: кинетического (а), смешанного (б) и диффузионного (в), а также схема фронта горения


Набегающая свежая газо-воздушная смесь нагревается за счет передачи теплоты путем теплопроводности и излучения от фронта горения. Подогретая до температуры воспламенения смесь сгорает во фронте горения, а продукты сгорания покидают эту зону и частично диффундируют в набегающую смесь. Положение фронта горения над срезом горелки зависит от физической природы горючего газа, концентрации его в смеси, скорости потока и других факторов. Фронт горения может перемещаться в направлении, нормальном к своей поверхности, до установления равенства между количествами сгоревшей и поступившей смеси, отнесенными к единице поверхности фронта. При этом выполняется и тепловое равновесие: поток теплоты от фронта горения уравновешивается встречным потоком переносимого холодного исходного газа.


Важнейшей характеристикой горения газообразного топлива является скорость нормального распространения пламени скорость, с которой перемещается фронт горения по нормали к своей поверхности в направлении набегающей газо-воздушной смеси. При равенстве на и проекции вектора скорости потока на нормаль к поверхности фронта этот фронт будет неподвижным по отношению к срезу горелки. Основные факторы, от которых зависит скорость нормального распространения пламени, - это реакционная способность газа, его концентрация в смеси и температура предварительного подогрева смеси.





Реакционная способность газа определяется величиной энергии активации. Очевидно, что газы, обладающие небольшой энергией активации, реагируют с окислителем с большей скоростью, и для этих газов характерны высокие скорости распространения пламени (водород, ацетилен). Количество теплоты, выделяемой при горении, и температура во фронте горения зависят от концентрации газа и смеси. Начальный подогрев смеси увеличивает температуру во фронте. Если скорость истечения смеси будет значительно превосходить скорость распространения пламени, то может произойти отрыв факела. Если скорости истечения значительно меньше скоростей распространения пламени, то наблюдается втягивание (проскок) пламени в горелку.


5. Нижний и верхний пределы взрываемости горючих газов


Другая важная особенность горения газо-воздушных смесей - это наличие концентрационных пределов. Горючие газы могут воспламеняться или взрываться, если они смешаны в определенных (для каждого газа) соотношениях с воздухом и нагреты не ниже температуры их воспламенения. Воспламенение и дальнейшее самопроизвольное горение газо-воздушной смеси при определенных соотношениях газа и воздуха возможно при наличии источника огня (даже искры).


Различают нижний и верхний концентрационные пределы взрываемости (воспламеняемости) - минимальное и максимальное процентное содержание газа в смеси, при которых может произойти воспламенение ее и взрыв.


Нижний предел соответствует минимальному, а верхний - максимальному количеству газа в смеси, при котором происходят их воспламенение (при зажигании) и самопроизвольное (без притока теплоты извне) распространение пламени (самовоспламенение). Эти же пределы соответствуют и условиям взрываемости газо-воздушных смесей.


Нижний предел взрываемости отвечает той минимальной концентрации паров горючего в смеси с воздухом, при которой происходит вспышка при поднесении пламени. Верхний предел взрываемости отвечает той максимальной концентрации паров горючего в смеси с воздухом, выше которой вспышки уже не происходит из-за недостатка кислорода воздуха. Чем шире диапазон пределов воспламеняемости (называемых также пределами взрываемости) и ниже нижний предел, тем более взрывоопасен газ. У большинства углеводородов пределы взрываемости невелики. Для метана СН4 нижний и верхний пределы взрываемости 5% и 15% объемных соответственно.


Самые широкие пределы взрываемости (воспламеняемости) имеет ряд газов: водород (4,0 - 75%), ацетилен (2,0 - 81%) и окись углерода (12,5 - 75%). Объемное содержание горючего газа в газо-воздушной смеси, ниже которого пламя не может самопроизвольно распространяться в этой смеси при внесении в нее источника высокой температуры, называется нижним концентрационным пределом воспламенения (распространения пламени) или нижним пределом взрываемости данного газа. Таким образом, смесь газа с воздухом взрывоопасна только в том случае, если содержание в ней горючего газа находится в диапазоне между нижним и верхним пределами взрываемости.


Если содержание газа в газо-воздушной смеси меньше нижнего предела воспламеняемости, то такая смесь гореть и взрываться не может, поскольку выделяющейся вблизи источника зажигания теплоты недостаточно для подогрева смеси до температуры воспламенения.


При содержании газа в смеси между нижним и верхним пределами взрываемости подожженная смесь загорается и горит как вблизи источника зажигания, так и при удалении его. Эта смесь взрывоопасна. А если содержание газа в смеси выше верхнего предела взрываемости, то количества воздуха в ней недостаточно для полного сгорания газа.


Существование пределов воспламеняемости (взрываемости) вызывается тепловыми потерями при горении. При разбавлении горючей смеси воздухом, кислородом или газом тепловые потери возрастают, скорость распространения пламени уменьшается и горение прекращается после удаления источника зажигания.


С увеличением температуры смеси пределы воспламеняемости расширяются, а при температуре, превышающей температуру самовоспламенения, смеси газа с воздухом или кислородом горят при любом объемном соотношении.


Пределы воспламеняемости (взрываемости) зависят не только от видов горючих газов, но и от условий проведения экспериментов (вместимости сосуда, тепловой мощности источника зажигания, температуры смеси, распространения пламени вверх, вниз, горизонтально и др.). Этим объясняются несколько отличающиеся друг от друга значения этих пределов в различных литературных источниках. При распространении пламени сверху вниз или горизонтально нижние пределы несколько возрастают, а верхние - снижаются.


Расчетное избыточное давление при взрыве таких смесей следующее: природного газа - 0,75 МПа, пропана и бутана - 0,86 МПа, водорода - 0,74 МПа, ацетилена - 1,03 МПа. В реальных условиях температура взрыва не достигает максимальных значений и возникающие давления ниже указанных, однако они вполне достаточны для разрушения не только обмуровки котлов, зданий, но и металлических емкостей, если в них произойдет взрыв.


Основной причиной образования взрывных газо-воздушных смесей является утечка газа из систем газоснабжения и отдельных ее элементов (неплотность закрытия арматуры, износ сальниковых уплотнений, разрывы швов газопроводов, негерметичность резьбовых соединений и т. д.), а также несовершенная вентиляция помещений, топки и газоходов котлов и печей, подвальных помещений и различных колодцев подземных коммуникаций. Задачей эксплуатационного персонала газовых систем и установок является своевременное выявление и устранение мест утечек газа и строгое выполнение производственных инструкций по использованию газообразного топлива, а также безусловное качественное выполнение планово-предупредительного осмотра и ремонта систем газоснабжения и газового оборудования.


6. Особенности горения жидкого топлива


Основным жидким топливом, используемым в настоящее время, является мазут. В установках небольшой мощности используется также печное топливо, представляющее собой смесь технического керосина со смолами. Наибольшее практическое применение имеет метод сжигания жидкого топлива в распыленном состоянии. Распыление топлива позволяет значительно ускорить его сгорание и получить высокие тепловые напряжения объемов топочных камер вследствие увеличения площади поверхности контакта топлива с окислителем.





Температура кипения жидких топлив всегда ниже температуры их самовоспламенения, т. е. той минимальной температуры среды, начиная с которой топливо воспламеняется и затем горит без постороннего теплового источника. Эта температура выше, чем температура воспламенения, при которой топливо горит только в присутствии постороннего источника зажигания (искры, раскаленной спирали и т. п.). Из-за этого при наличии окислителя горение жидких топлив возможно лишь в парообразном состоянии. Это обстоятельство является главным для понимания механизма процесса горения жидкого топлива.


Процесс сжигания жидкого топлива включает следующие этапы: 1 - пульверизации (распыливания) при помощи форсунок; 2 - испарения и термического разложения топлива; 3 - смешения полученных продуктов с воздухом; 4 - воспламенения смеси; 5 - собственно горения.


Цель пульверизации заключается в увеличении поверхности соприкосновения жидкости с воздухом и газами. Поверхность при этом возрастает в несколько тысяч раз. За счет сильного излучения горящего факела капельки очень быстро испаряются и подвергаются термическому разложению (крекингу).


Капля жидкого топлива, попавшая в нагретый объем, температура которого выше температуры самовоспламенения, начинает частично испаряться. Пары топлива смешиваются с воздухом, и образуется паровоздушная смесь. Воспламенение происходит в тот момент, когда концентрация паров в смеси достигнет величины, превышающей ее значение на нижнем концентрационном пределе воспламенения. Горение затем поддерживается самопроизвольно за счет теплоты, получаемой каплей от сжигания горючей смеси. Начиная с момента воспламенения скорость процесса испарения, возрастает, так как температура горения горючей паро-воздушной смеси значительно превышает начальную температуру объема, куда вводится распыленное топливо.


Таким образом, горение жидкого топлива характеризуется двумя взаимосвязанными процессами: испарением топлива вследствие выделения теплоты от горящей паро-воздушной смеси и собственно горением этой смеси около поверхности капли. Гомогенное горение паровоздушной смеси - это химический процесс, а процесс испарения является по своей природе физическим. Результирующая скорость и время горения жидкого топлива будут определяться интенсивностью протекания физического или химического процесса.


При сжигании жидкого топлива факел состоит из трех фаз: 1 - жидкой; 2 - твердой (дисперсный углерод от разложения жидких углеводородов); 3 - газообразной.


Скорость горения, как и при сжигании горючих газов, зависит от условий смесеобразования, степени предварительной аэрации, степени турбулентности факела, температуры камеры сгорания и условий развития факела. Высокомолекулярные углеводородные газы, разлагаясь при высоких температурах на простые соединения, выделяют сажистый углерод, размеры частичек которого очень малы (~ 0,3 мкм). Эти частицы, раскаляясь, обеспечивают свечение пламени. Можно снизить светимость пламени тяжелых углеводородов. Для этого следует осуществить частичное предварительное смешение, т. е. подать в форсунку некоторое количество воздуха. Кислород изменяет характер разложения органических молекул: углерод выделяется не в твердом виде, а в виде окиси углерода, горящей синеватым прозрачным пламенем.


Если скорость сгорания образующихся паров значительно превышает скорость испарения топлива, то за скорость горения принимают скорость испарения и тогда  τгор = τфиз + τхим.


В противном случае, когда скорость химического взаимодействия паров с окислителем значительно ниже скорости испарения топлива, интенсивность процесса сжигания будет целиком зависеть от скорости протекания химических реакций горения паро-воздушной смеси и испарение капли - наиболее длительная стадия горения жидкого топлива. Поэтому для успешного и экономичного сжигания жидкого топлива необходимо увеличивать дисперсность распыления.


7. Горение твердого топлива (гетерогенное горение)


Для горения топлива нужно большое количество воздуха, превышающее в несколько раз по весу количество топлива. При продувании слоя топлива воздухом сила аэродинамического давления потока Р может быть меньше веса кусочка топлива G или, наоборот, больше его. В топках с «кипящим слоем» «кипение» связано с разъединением частиц топлива, что увеличивает объем слоя в 1,5-2,5 раза. Движение частиц топлива (обычно они от 2 до 12 мм) похоже на движение кипящей жидкости, почему такой слой и получил название «кипящего».


В топках с «кипящим» слоем газо-воздушный поток не циркулирует в слоевой зоне, а прямоточно продувает слой. Поток воздуха, пронизывающий слой, испытывает неоднородное торможение, что создает сложное поле скоростей, в котором частицы все время меняют свою парусность в зависимости от положения в потоке. Частицы при этом приобретают вращательно-пульсирующее движение, которое и создают впечатление кипящей жидкости.


Процесс сгорания твердого топлива может быть условно разделен на стадии, накладывающиеся одна на другую. Эти стадии протекают в разных температурных и тепловых условиях и требуют различного количества окислителя.





Свежее топливо, поступающее в топку, подвергается более или менее быстрому нагреванию, из него испаряется влага и выделяются летучие вещества - продукты сухой перегонки топлива. Одновременно протекает процесс коксообразования. Кокс сгорает и частично газифицируется на колосниковой решетке, а газообразные продукты сгорают в топочном пространстве. Негорючая минеральная часть топлива при сгорании топлива превращается в шлак и золу.


8. Конструкции различных топок


Топочным устройством или топкой называют часть котельного агрегата, которая предназначена для сжигания топлива и выделения химически связанного в нем тепла. Вместе с тем топка является теплообменным устройством, в котором поверхностям нагрева отдается излучением часть тепла, выделившегося при горении топлива. Кроме того, при сжигании твердого топлива в топке выпадает некоторая часть образующейся золы.


В соответствии с видом сжигаемого топлива различают топки для сжигания твердого, жидкого и газообразного топлива. Кроме того, есть топки, в которых одновременно можно сжигать различные виды топлива: твердое с жидким или газообразным, жидкое и газообразное.


Существуют три основных способа сжигания топлива: в слое, факеле и вихре (циклоне). В соответствии с этим топки разделяют на три больших класса: слоевые, факельные и вихревые. Факельные и вихревые топки часто объединяют в общий класс камерных топок.



Классификация слоя при сжигании твердого топлива


Рис. 2. Классификация слоя при сжигании твердого топлива: а - плотный слой; б - «кипящий» слой; в и г - взвешенный слой (гетерогенные факелы)


В слое топливо сжигают под котельными агрегатами паропроизводительностью до 20-35 т/ч. В слое можно сжигать только твердое кусковое топливо, например: бурые и каменные угли, кусковой торф, горючие сланцы, древесину. Топливо, подлежащее сжиганию в слое, загружают на колосниковую решетку, на которой оно лежит плотным слоем. Горение топлива происходит в струе воздуха, пронизывающего этот слой обычно снизу вверх.


Топки для сжигания топлива в слое разделяют на три класса (рис. 3):


1 - топки с неподвижной колосниковой решеткой и неподвижно лежащим на ней слоем топлива (рис. 3, а и б);


2 - топки с движущейся колосниковой решеткой, перемещающей лежащий на ней слой топлива (рис. 3, в, г);


3 - топки с неподвижной колосниковой решеткой и перемещающимся по ней слоем топлива (рис. 3, д, е, ж).



Схемы топок для сжигания топлива


Рис. 3. Схемы топок для сжигания топлива в слое: а - ручная горизонтальная колосниковая решетка; б - топка с забрасывателем на неподвижный слой; в - топка с цепной механической решеткой; г - топка с механической цепной решеткой обратного хода и забрасывателем; д - топка с шурующей планкой; е - топка с колосниковой решеткой; ж - топка системы Померанцева


Самой простой топкой с неподвижной колосниковой решеткой и неподвижным слоем топлива является топка с ручной горизонтальной колосниковой решеткой (рис. 3, а). На этой решетке можно сжигать твердое топливо всех видов, но необходимость ручного обслуживания ограничивает область применения ее в котлах очень малой паропроизводительности (до 1-2 т/ч).


Для слоевого сжигания топлива под котлами большей паропроизводительности механизируют обслуживание топки и прежде всего - подачу в нее свежего топлива.


В топках с неподвижной решеткой и неподвижным слоем топлива механизация загрузки осуществляется применением забрасывателей 1, которые непрерывно механически загружают свежее топливо и разбрасывают его по поверхности колосниковой решетки 2 (рис. 3, б). В таких топках можно сжигать каменные и бурые угли, а иногда и антрацит под котлами паропроизводительностью до 6,5-10,0 т/ч.


К классу топок с движущейся колосниковой решеткой, перемещающей лежащий на ней слой топлива, относят топки с механической цепной решеткой (рис. 3, в), которые выполняют в различных модификациях. В этой топке топливо из загрузочной воронки 1 поступает самотеком на переднюю часть медленно движущегося бесконечного цепного колосникового полотна 2, которым оно подается в топку. Горящее топливо непрерывно перемещается по топке вместе с полотном решетки. При этом оно полностью сгорает, после чего образовавшийся в конце решетки шлак ссыпается в шлаковый бункер 3.


Топки с цепной решеткой чувствительны к качеству топлива. Лучше всего они подходят для сжигания сортированных неспекающихся умеренно влажных и умеренно зольных углей с относительно высокой температурой плавления золы и выходом летучих веществ УГ = 10-25% на горючую массу. В таких топках можно также сжигать сортированный антрацит. Для работы на спекающихся углях, а также на углях с легкоплавкой золой топки с цепной решеткой непригодны. Эти топки можно устанавливать под котлами паропроизводительностью от 10 до 150 т/ч, но в России их устанавливают под паровыми котлами паропроизводительностью 10-35 т/ч главным образом для сжигания сортированного антрацита.


Для сжигания топлива большой влажности, в частности кускового торфа, цепную решетку комбинируют с шахтным предтопком, который нужен для предварительной сушки топлива. Самой распространенной шахтно-цепной топкой является топка проф. Т. Ф. Макарьева.


Другим типом топки рассматриваемого класса являются топки с цепной решеткой обратного хода и забрасывателем. В этих топках колосниковое полотно решетки движется в обратном направлении, т. е. от задней стенки топки к передней. На фронтальной стене топки размещены забрасыватели, непрерывно подающие топливо на полотно. Выгоревший шлак ссыпается с решетки в шлаковый бункер, размещенный под передней частью топки. Топки рассматриваемого типа значительно меньше чувствительны к качеству топлива, чем топки с решеткой прямого хода, поэтому их применяют для сжигания как сортированных, так и не сортированных каменных и бурых углей под котлами паропроизводительностью 10-35 т/ч.


Топки с неподвижной колосниковой решеткой и перемещающимся по ней слоем топлива основаны на различных принципах организации процессов движения и горения топлива. В топках с шурующей планкой топливо перемещается вдоль неподвижной горизонтальной колосниковой решетки специальной планкой особой формы, движущейся возвратно-поступательно по колосниковому полотну. Применяют их для сжигания бурых углей под котлами паропроизводительностью до 6,5 т/ч. Разновидностью топки с шурующей планкой является факельно-слоевая топка системы проф. С. В. Татищева, получившая применение для сжигания фрезерного торфа под котлами паропроизводительностью до 75 т/ч. Она отличается от обычной топки с шурующей планкой наличием шахтного предтопка, в котором происходит предварительная подсушка фрезерного торфа дымовыми газами, засасываемыми в шахту специальным эжектором. В этой топке можно также сжигать бурые и каменные угли.


В топках с наклонной колосниковой решеткой и скоростных топках системы В. В. Померанцева топливо, поступив в топку сверху, при сгорании сползает под действием силы тяжести в нижнюю часть топки, позволяя поступать в топку новым порциям топлива. Эти топки применяют для сжигания древесных отходов под котлами паропроизводительностью от 2,5 до 20 т/ч, а шахтные топки и для сжигания кускового торфа - под котлами паропроизводительностью до 6,5 т/ч.


В связи с особенностями топливного баланса России, в котором используют в основном каменные и отчасти бурые угли, больше всего распространены топки с забрасывателями и механические цепные решетки. Топки же, предназначенные для сжигания торфа, сланцев и древесины, распространены значительно меньше, так как топливо этих видов в топливном балансе России играет второстепенную роль.


В факельном процессе можно сжигать топливо твердое, жидкое и газообразное. При этом:


- газообразное топливо не требует какой-либо предварительной подготовки;


- твердое топливо должно быть предварительно размолото в тонкий порошок в особых пылеприготовительных установках, основным элементом которых являются углеразмольные мельницы; 


- жидкое топливо должно быть распылено на очень мелкие капли в специальных форсунках.


Жидкое и газообразное топливо сжигают под котлами любой паропроизводительности, а пылевидное топливо - под котельными агрегатами паропроизводительностью начиная от 35-50 т/ч и выше.


Сжигание в факельном процессе топлива каждого из трех видов отличается конкретными особенностями, но общие принципы факельного способа сжигания остаются одинаковыми для всякого топлива.


Факельная топка (рис. 4) представляет собой прямоугольную камеру 1, выполненную из огнеупорного кирпича, в которую через горелки 2 вводят в тесном контакте топливо и воздух, необходимый для его горения, то есть топливо-воздушную смесь. Эта смесь воспламеняется и сгорает в образовавшемся факеле. Газообразные продукты сгорания покидают топку в ее верхней части. При сжигании пылевидного топлива с этими продуктами сгорания в газоходы котла уносится и значительная часть золы топлива, а остальное количество золы выпадает в нижнюю часть (шлаковую воронку) топки в виде шлака.


Схемы камерных топок


Рис. 4. Схемы камерных топок: a - однокамерная топка для пылевидного топлива с твердым шлакоудалением; б - однокамерная топка для пылевидного топлива с жидким шлакоудалением; в - топка для жидкого и газообразного топлива; г - топка с полуоткрытой топочной камерой для сжигания пылевидного топлива


Стены топочной камеры изнутри покрывают системой охлаждаемых водой труб - топочными водяными экранами. Эти экраны имеют назначение предохранить кладку топочной камеры от износа и разрушения под действием высокой температуры факела и расплавленных шлаков, но главное - они представляют собой эффективную поверхность нагрева, воспринимающую большое количество тепла, излучаемого факелом. Поэтому эти топочные экраны становятся очень эффективным средством охлаждения дымовых газов в топочной камере.


Факельные топки для пылевидного топлива разделяют на два класса по способу удаления шлака: а) топки с удалением шлака в твердом состоянии; б) топки с жидким шлакоудалением.


Камера 1 топки с удалением шлака в твердом состоянии (рис. 4, а) ограничена снизу шлаковой воронкой 3, стенки которой защищены экранными трубами. Эта воронка получила название «холодной». Капли шлака, выпадающие из факела, попадая в эту воронку, вследствие относительно низкой температуры среды в ней затвердевают, гранулируясь в отдельные зерна. Из холодной воронки гранулы шлака через горловину 4 попадают в шлакоприемное устройство 5, из которого они специальным механизмом удаляются в систему шлакозолоудаления.


Камера 1 топки с жидким шлакоудалением (рис. 4, б) ограничена снизу горизонтальным или слегка наклонным подом 3, вблизи которого в результате тепловой изоляции нижней части топочных экранов поддерживают температуру, превышающую температуру плавления золы. В результате этого шлак, выпавший из факела на этот под, остается в расплавленном состоянии и вытекает из топки через летку 4 в шлакоприемную ванну 5, наполненную водой, где, затвердевая, растрескивается на мелкие стекловидные частицы.


Топки с жидким шлакоудалением разделяют на одно- (рис. 4, б) и двухкамерные для крупных котлов (рис. 4, г). В последних топочная камера разделена на две камеры:


1 - камеру горения, в которой происходит горение топлива;


2 - камеру охлаждения, в которой продукты сгорания охлаждают.


Экраны камеры горения покрывают тепловой изоляцией, чтобы


максимально повысить температуру горения с целью более надежного получения жидкого шлака, а экраны камеры охлаждения - открытыми, чтобы они могли больше снизить температуру продуктов сгорания.


Факельные топки для жидкого и газообразного топлива (рис. 4, в) выполняют с горизонтальным или слегка наклонным подом.


В очень крупных котельных агрегатах наряду с топочными камерами призматической формы выполняют так называемые полуоткрытые камеры, которые характеризуются наличием особого пережима, разделяющего топку на две зоны: горения и охлаждения. Полуоткрытые камеры выполняют для сжигания пылевидного (рис. 4, г), жидкого и газообразного топлива.


Факельные топки можно также классифицировать по типу горелок, которые бывают прямоточными и завихривающими, и по расположению горелок в топочной камере. Горелки размещают на передней (рис. 4) и боковых стенах ее и по углам топочной камеры (рис. 4). В крупных котельных агрегатах возможно применять также встречное размещение горелок на передней и задней стенах топки (рис. 4, г).


В вихревых (циклонных) топках можно сжигать твердое топливо и с высоким содержанием летучих, измельченное до пылевидного состояния или до размеров зерна 4-6 мм, а также (пока редко) мазут.


Принцип работы циклонной топки заключается в том, что в почти горизонтальном (рис. 5, а) или в вертикальном цилиндрическом предтопке 1 небольшого диаметра создается газо-воздушный вихрь, в котором частицы горящего топлива многократно обращаются до тех пор, пока они не сгорают почти полностью во взвешенном состоянии.



Схемы циклонных топок


Рис. 5. Схемы циклонных топок: а - топка с горизонтальными циклонными предтопками; б - топка с вертикальными циклонными предтопками


Продукты сгорания из предтопков при сжигании твердого топлива поступают в камеру дожигания 2, а из нее - в камеру охлаждения 3 и далее в газоходы котельного агрегата. Шлак из предтопков удаляется в жидком виде через летки 5, причем для увеличения количества уловленного шлака между камерой дожигания и камерой охлаждения или между циклонными предтопками и камерой дожигания устанавливают шлакоулавливающий пучок труб 4. При сжигании мазута, а иногда и измельченного твердого топлива камеры дожигания не делают и продукты сгорания выводят непосредственно из предтопков в камеру охлаждения. Циклонные топки применяют в котельных агрегатах относительно высокой паропроизводительности.


Кроме перечисленных выше трех основных способов сжигания топлива, существуют еще некоторые промежуточные способы.



Другие статьи:

Теплообменники. Теплообменные аппараты. Типы, виды, устройство, расчет теплообменников.
Автоматизированная система управления вентиляцией
Управление освещением из нескольких мест. Виды, схема управления светом из нескольких мест..