Инфракрасная термография – это наука использования электронно - оптических устройств для регистрации и измерения излучения и сопоставления его с температурой поверхностей. Излучение – это передача тепла в виде лучистой энергии (электромагнитных волн) без промежуточной среды, используемой для передачи. Современная инфракрасная термография использует электронно-оптические устройства для измерения потока излучения и вычисления температуры поверхности обследуемых конструкций или оборудования.
Люди всегда могли чувствовать инфракрасное излучение. Нервные окончания человеческой кожи могут регистрировать изменения температуры величиной ±0,009°C (0,005°F). Несмотря на свою высокую чувствительность, нервные окончания человека совершенно не подходят для неразрушающего теплового контроля.
Даже если бы люди обладали такой же способностью чувствовать тепло, как животные, которые могут находить теплокровную добычу в темноте, все равно потребовался бы более совершенный инструмент для обнаружения тепла. Поскольку люди имеют физиологические ограничения способности чувствовать тепло, были разработаны сверхчувствительные к тепловому излучению механические и электронные устройства. Эти устройства стали обычными для проведения теплового контроля при решении бесчисленного количества задач.
История развития инфракрасной технологии
Слово «инфракрасный» означает «за красным», что указывает на место, которое занимают эти длины волн в спектре электромагнитного излучения. Термин «термография» происходит от двух корней, которые означают «температурное изображение». Корни термографии уходят к немецкому астроному, сэру Вильяму Гершелю, который в 1800 г. проводил эксперименты с солнечным светом.
Тепловое изображение остаточного тепла, переданного рукой при прикосновении к поверхности окрашенной стены, легко обнаружить с помощью тепловизора.
Гершель открыл инфракрасное излучение, когда пропускал солнечный свет через призму, и располагал чувствительный ртутный термометр на различных цветах для измерения температуры. Гершель обнаружил, что при переходе за красный цвет в область, известную как «невидимое тепловое излучение», температура повышалась. «Невидимое тепловое излучение» лежало в области электромагнитного спектра, которая сейчас называется инфракрасным излучением. оно так же является электромагнитным излучением.
Через двадцать лет, немецкий физик Томас Зеебек открыл термоэлектрический эффект. Это привело к открытию итальянским физиком Леопольдо Нобили термобатареи на основе ранних версий термопар, в 1829 г. Это простое контактное устройство основано на следующем явлении. При изменении температуры между двумя разнородными металлами появлялась разность потенциалов. Партнер Нобили, Македонио Меллони, вскоре превратил термобатарею в термостолбик (последовательное расположение термобатарей) и сфокусировал на нем тепловое излучение таким образом, что смог обнаруживать тепло тела с расстояния 9,1 м (30 футов).
В 1880 г., американский астроном Сэмюел Лэнгли использовал болометр для обнаружения тепла тела коровы с расстояния более 300 м (1000 футов). В болометре измеряется не разность потенциалов, а изменение электрического сопротивления, связанное с изменением температуры. Сын сэра Вильяма Гершеля, сэр Джон Гершель, используя устройство, называемое эвапорографом, получил первое инфракрасное изображение в 1840 г. формирование теплового изображения происходило за счет различной скорости испарения тонкой пленки масла, и его можно было увидеть в отраженном свете.
Тепловизор – это устройство, которое получает тепловое изображение в инфракрасной области спектра без прямого контакта с оборудованием. См. рис. 1-1.
Рис. 1-1. Тепловизор – это прибор, который получает тепловое изображение в инфракрасной области спектра без непосредственного контакта с оборудованием.
Первые модели тепловизоров были построены на фоторезистивных приемниках излучения. С 1916 по 1918 гг. американский изобретатель Теодор Кейс экспериментировал с фотосопротивлениями для получения сигнала не за счет нагрева, а благодаря прямому взаимодействию с фотонами. В результате был получен более быстрый, более чувствительный приемник излучения на основе эффекта фотопроводимости. В течение 1940-1950-х гг. развитие тепловизионной технологии было связано с возрастающим применением для военных целей. Немецкие ученые обнаружили, что при охлаждении фоторезистивного приемника излучения, его характеристики улучшаются.
Тепловизоры для невоенных целей применялись не только до 1960-х гг. Хотя ранние тепловизионные системы были громоздкими, медленными, имели низкую разрешающую способность, их использовали в промышленности для обследования систем передачи и распределения электроэнергии. В 1970-х гг. достижения в области военных применений привели к появлению первых переносных систем, которые можно было использовать для диагностики зданий и неразрушающего контроля.
В 1970-х гг. тепловизионные системы были прочными и надежными, однако качество изображений было низким по сравнению с современными тепловизорами. К началу 1980-х гг., тепловидение широко применялось в медицине, в основных отраслях промышленности, а так же для обследования зданий. Тепловизионные системы калибровались таким образом, чтобы можно было получать полностью радиометрические изображения, чтобы радиометрические температуры можно было измерить по всему изображению. Радиометрическое изображение – это тепловое изображение, содержащее рассчитанные значения температур для всех точек на изображении.
ПОЛЕЗНО ЗНАТЬ
Первые тепловизоры отображали тепловизионное изображение с помощью черно-белой электронно-лучевой трубки. Запись изображения можно было осуществлять только с помощью фотографии или магнитной ленты.
На замену сжатому или сжиженному газу, который использовался для охлаждения тепловизоров, пришли более надежные улучшенные устройства охлаждения. Так же были разработаны и широко применялись менее дорогие тепловизионные системы на основе пировидиконов (пироэлектрических видиконных трубок). Хотя они не были радиометрическими, тепловизионные системы на основе пировидиконов имели небольшой вес, были переносными и работали без охлаждения.
В конце 1980-х гг. военные сделали доступными для широкого применения матричные приемники излучения (матрицы в фокальной плоскости, FPA). Матрицы в фокальной плоскости состоят из массива (обычно прямоугольного) инфракрасных приемников излучения, расположенных в фокальной плоскости объектива. См. Рис. 1-2.
Рис. 1-2. Матричный приемник излучения (матрица в фокальной плоскости, FPA) – это устройство получения изображения, состоящее из массива (обычно прямоугольного) чувствительных к излучению пикселей, расположенных в фокальной плоскости объектива.
Это был значительный прогресс по сравнению со сканирующими приемниками излучения, которые использовались с самого начала. Это привело к повышению качества изображения и пространственного разрешения. Типичные матричные приемники излучения современных тепловизоров имеют размер от 16х16 до 640х480 пикселей. Таким образом, пиксель является самым маленьким отдельным элементом матричного приемника излучения, который может улавливать инфракрасное излучение. Для специальных задач существуют приемники излучения, размер которых превышает 1000х1000 элементов. Первое число представляет собой количество вертикальных колонок, а второе – количество горизонтальных линий, отображаемых на дисплее. Например, матрица размером 160х120 элементов в сумме имеет 19200 пикселей (160 пикселей х 120 пикселей = 19200 пикселей всего).
Развитие технологии матриц в фокальной плоскости, использующих различные типы приемников излучения, далеко шагнуло, начиная с 2000 г. Длинноволновые тепловизоры – это тепловизоры, которые чувствительны к инфракрасному излучению в диапазоне длин волн от 8 до 15 мкм. Микрон (мкм) – это единица измерения длины, равная одной тысячной миллиметра (0,001 м). Средневолновые тепловизоры – это тепловизоры, чувствительные к инфракрасному излучению в диапазоне длин волн от 2,5 мкм до 6 мкм. В настоящее время существуют как длинноволновые, так и средневолновые полностью радиометрические тепловизионные системы, часто с функцией наложения изображений и температурной чувствительностью 0,05 °С (0,09°F) и менее.
За прошедшее десятилетие стоимость таких систем снизилась больше чем в десять раз, а качество значительно повысилось. Кроме того, значительно возросло использование программного обеспечения для обработки изображений. Практически все современные инфракрасные системы используют программное обеспечение для облегчения анализа и подготовки отчетов. отчеты можно быстро создать и отправить в электронном виде через интернет, либо сохранить в одном из широко используемых форматов, таких, как PDF, а так же записать на одном из цифровых устройств хранения данных различных типов.
Принципы работы тепловизоров
Полезно иметь общее представление о том, как работают тепловизионные системы, поскольку для термографистов чрезвычайно важно учитывать пределы возможностей оборудования.
Это позволяет более точно выявлять и анализировать возможные проблемы. Тепловизоры предназначены для регистрации инфракрасного излучения, которое испускается объектами. См. Рис. 1-3. Объект обследуется с помощью тепловизора.
Инфракрасное излучение фокусируется с помощью оптики тепловизора на приемнике излучения, который выдает сигнал, обычно в виде изменения напряжения или электрического сопротивления. Полученный сигнал регистрируется электроникой тепловизионной системы. Сигнал, который дает тепловизор, превращается в электронное изображение (термограмму), которое отображается на экране дисплея. Термограмма – это изображение объекта, обработанное электроникой для отображения на дисплее таким образом, что различные градации цвета соответствуют распределению инфракрасного излучения по поверхности объекта. Таким образом, термографист может просто увидеть термограмму, которая соответствует тепловому излучению, приходящему с поверхности объекта.
Рис. 1-3. Объект обследуется с помощью тепловизора. Назначение тепловизора – регистрация инфракрасного излучения, испускаемого объектом
Термограмма – это обработанное электроникой изображение на дисплее, где различные градации цвета соответствуют распределению инфракрасного излучения по поверхности объекта.
Компоненты тепловизора
Обычный тепловизор имеет несколько общих для всех подобных приборов компонентов, включающих объектив, крышку объектива, дисплей, приемник излучения и обрабатывающую электронику, органы управления, устройства хранения данных, а так же программное обеспечение для обработки данных и создания отчетов. Эти компоненты могут изменяться в зависимости от типа и модели тепловизионной системы. См. Рис. 1-4.
Объективы. Тепловизоры имеют как минимум один объектив. Объектив тепловизора собирает инфракрасное излучение и фокусирует его на приемнике излучения. Приемник излучения выдает сигнал и создает электронное (тепловое) изображение или термограмму. Объектив тепловизора используется для того, чтобы собрать и сфокусировать приходящее инфракрасное излучение на приемнике излучения. объективы большинства длинноволновых тепловизоров изготовлены из германия. Пропускание объективов улучшается за счет тонкопленочных просветляющих покрытий.
ПОЛЕЗНО ЗНАТЬ
Из-за постоянной необходимости экономить энергоресурсы, муниципалитеты и правительственные агентства производят авиационную инфракрасную съемку с помощью военных авиационных тепловизионных систем. Такая съемка необходима для того, чтобы общины, жители и коммерческие организации могли получить информацию о тепловых потерях в зданиях.
Рис. 1-4. Обычные тепловизоры имеют несколько общих компонентов, к которым относятся объектив, крышка объектива, дисплей, органы управления и ручка с ремешком.
Так же тепловизоры обычно имеют футляр для переноски и хранения прибора, программного обеспечения и другого вспомогательного оборудования для использования в полевых условиях.
Дисплеи. Тепловое изображение отображается на жидкокристаллическом дисплее (ЖКД), расположенном на тепловизоре. Дисплей должен иметь большой размер и высокую яркость, чтобы изображение на нем можно было легко увидеть в различных условиях освещенности в различных местах работы. На дисплее часто отображается дополнительная информация, такая как уровень заряда аккумулятора, дата, время, температура объекта (в °F, °C, или K), видимое изображение и цветовая шкала температур. См. Рис. 1-5.
Рис. 1-5. Тепловое изображение отображается на жидкокристаллическом дисплее (ЖКД) тепловизора.
Приемник излучения и схемы обработки сигнала. Приемник излучения и схемы обработки сигнала используются для превращения инфракрасного излучения в полезную информацию. Тепловое излучение от объекта фокусируется на приемнике излучение, который обычно изготовлен из полупроводниковых материалов. Тепловое излучение генерирует измеряемый сигнал на выходе приемника излучения. Сигнал обрабатывается электронными схемами внутри тепловизора, чтобы на дисплее прибора появилось тепловое изображение.
Органы управления. С помощью органов управления можно выполнить разнообразные электронные настройки для улучшения теплового изображения на дисплее. В электронном виде изменяются такие настройки, как диапазон температур, тепловой уровень и диапазон, цветовая палитра и настройки слияния изображения. Так же можно установить значение коэффициента излучения и отраженной фоновой температуры. См. Рис. 1-6.
Рис. 1-6. С помощью органов управления можно изменить значение необходимых переменных, таких как диапазон температур, уровень и ширина диапазона, а так же другие настройки.
Устройства хранения данных. Электронные цифровые файлы, содержащие тепловые изображения и дополнительные данные, сохраняются на различных типах электронных карт памяти или устройств хранения и передачи данных. Многие инфракрасные тепловизионные системы так же позволяют сохранять дополнительные голосовые и текстовые данные, а так же соответствующее видимое изображение, полученное с помощью встроенной камеры, работающей в видимом спектре.
Программное обеспечение для обработки данных и создания отчетов. Программное обеспечение, которое используется с большинством современных тепловизионных систем, является функциональным и удобным для пользователя. Цифровые тепловые и видимые изображения импортируются на персональный компьютер, где их можно просмотреть с использованием различных цветовых палитр, произвести другие настройки всех радиометрических параметров, а так же воспользоваться функциями анализа. Обработанные изображения можно вставить в шаблоны отчетов и либо отправить на принтер, либо сохранить в электронном виде, или отправить заказчику через интернет.
Основные термины и определения средств измерений КИПиА |
Термоэлектрические преобразователи |
Термопреобразователи сопротивления |