Газоразрядная плазма создается в специальных устройствах- плазмотронах. Представим основные разновидности этих устройств. Существует две разновидности плазмотронов: 1 - Дуговые плазмотроны постоянного тока. 2 - Высокочастотные плазмотроны.
Рис. 1.17. Дуговой плазмотрон прямого действия: 1 - электрод, 2 - обрабатываемая деталь, 3 - водоохлаждаемый корпус, 4 - источник постоянного напряжения, 5 - дуговой разряд, 6 – плазменная струя
Рис. 1.18 Дуговой плазмотрон косвенного действия: 1 - электрод, 2 - обрабатываемая деталь, 3 - водоохлаждаемый корпус, 4 - источник постоянного напряжения, 5 - дуговой разряд, 6 - плазменная струя
Дуговой плазмотрон постоянного тока состоит из следующих узлов: внутреннего электрода, разрядной камеры и устройства подачи плазмообразующего вещества. Различают два типа дуговых плазмотронов - для формирования плазменной дуги и для создания плазменной струи. В устройствах первой группы (плазмотроны прямого действия) дуговой разряд горит между внутренним электродом (1) и обрабатываемым материалом, служащим анодом (2) (см. рис. 1.17).
В устройствах второй группы (плазмотроны косвенного действия, см. рис.1.18) плазма, создаваемая в разряде между электродом (1) и корпусом (3), истекает из разрядной камеры в виде струи. Стабилизация разряда в дуговых плазмотронах в большинстве случаев осуществляется с помощью магнитного поля.
Плазмотроны косвенного действия (плазмоструйные) используются при термической обработке как металлов, так и диэлектриков, а также для нанесения покрытий. Плазмотроны прямого действия (плазмодуговые) служат для сварки, резки, плавки электропроводных материалов. Мощности дуговых плазмотронов 102-10 7Вт. Температура струи на срезе сопла 3000-12000 К.
Комбинированные плазмотроны представляют собой симбиоз плазмодуговых и плазмоструйных плазмотронов. В них дуга зажигается одновременно между электродом (1), корпусом (3) и заготовкой (2).
Высокочастотный плазмотрон (см. рис. 1.19) включает: электромагнитную катушку, индуктор (1) или электроды, подключенные к источнику ВЧ-энергии, корпус плазмотрона (2), разрядную камеру (4),
узел ввода плазмообразующего вещества. Мощность ВЧ-плазмотронов достигает 106 Вт, температура в центре разрядной камеры достигает 10000 К. Частота электромагнитного поля 10-50 МГц.
Рис. 1.19. Схема индукционного высокочастотного плазмотрона: 1 - индуктор, 2 - водоохлаждаемый корпус, 3 - плазменная струя, 4 - разрядная камера, 5 - обрабатываемая деталь
Плазменные технологии
Газоразрядная плазма широко используется в современной технике для реализации следующих электротехнологий:
- синтез веществ,
- получение ультрадисперсных порошков,
- плавка, резка, сварка металлических изделий,
- травление и очистка поверхности,
- нанесение покрытий на изделия,
- плазмохимическое легирование поверхности.
Рассмотрим некоторые из этих технологий более подробно.
Плазменная наплавка. Это процесс нанесения на поверхность заготовки упрочняющих слоев большой толщины. В результате деталь из дешевых материалов приобретает уникальные механические свойства. Для упрочнения металлических деталей используется плазмотроны косвенного действия (см. рис. 1.19), на рисунке по стрелке подается, наряду с газом, наплавляемый металл (как правило, порошок твердого сплава), Обычно толщина наплавленного за один проход слоя металла составляет 1-10 мм.
Примером плазменной наплавки является нанесение инструментальной стали на обычную углеродистую сталь. В результате деталь из дешевого металла приобретает высокие свойства, характерные для дорогих изделий. Кроме того, осуществляют эффективное восстановления коленчатых валов двигателем внутреннего сгорания, а также ремонт дорогостоящих штампов.
Плавление и кристаллизация. Плазменное плавление и кристаллизация материалов, как металлов, так и диэлектриков и полупроводников получило широкое распространение ввиду высокой технологичности процесса. Схема соответствующих устройств приведена на рис. 1.20. Сверху в камеру (2) вмонтирован плазмотрон (1), в плазменную струю (3) которого помещается заготовка, подлежащая расплавлению. Расплавленный материал попадает в кристаллизатор (4), где кристаллизуется, и слиток вынимается из камеры. Для предотвращения окисления плавку ведут в инертной атмосфере. В результате цикла «плавление-кристаллизация», происходит очистка материала от примесей. Данный способ позволяет плавить как металлы, так и оксиды, карбиды, нитриды, при этом температура плавления может достигать 4000 0С.
Рис. 1.20. Схема напыления в плазмотроне: 1 - плазмотрон, 2 - подложки, 3 - тигель с напыляемым материалом, 4 - потоки атомов
Рис. 1.21. Схема технологического процесса плазменного плавления и кристаллизации металлов: 1 - плазмотрон, 2 - корпус установки, 3 - плазменная струя, 4 - кристаллизатор, 5 - заготовка расплавляемого материала
Плазменное напыление. Плазменное напыление является процессом нанесения покрытий с помощью высокотемпературной плазменной струи, которая обеспечивает испарение материала и перенос его атомов на подложку. Напыляемым материалом могут быть металлы, керамика, различные полупроводниковые и диэлектрические соединения. Напыление применяется для нанесения на изделие тонкого слоя другого материала с целью улучшения прочностных, коррозионных, жаропрочных, декоративных и других эксплуатационных свойств материалов и изделий. На рис. 1.21 представлена схема процесса напыления атомов на подложку с использованием плазмотрона. Распыляемый материал (3)
под действием плазменной струи переходит в атомарное состояние, атомы вещества осаждаются на подложке (2), образуя прочную пленку, толщина которой определяется временем экспозиции.
Кроме плазмотронов, для напыления применяются плазменные ускорители. Это устройства для получения потоков плазмы со скоростями (10-1000) км/c, что соответствует кинетической энергии ионов от 10 эВ до 106 эВ. Наибольшее распространение получили плазменные ускорители, в которых для создания и ускорения используется энергия электрического разряда. В отличии от ускорителей заряженных частиц в канале плазменного ускорителя находятся одновременно положительные ионы и электроны, то есть не нарушается квазинейтральность плазмы. Основной механизм ускорения плазмы состоит в следующем. Плазма рассматривается как сплошная среда. Ускорение обусловлено перепадом электронного и ионного давления и действием силы Ампера (пондероматорные силы), возникающей при взаимодействии токов, текущих в плазме с магнитным полем. Для плазменного напыления используются как плазмотроны, так и плазменные ускорители. Последние имеют несомненное преимущество, поскольку ускоренные ионы проникают в материал подложки на большую глубину, тем самым обеспечивая хорошее сцепление напыленной пленки с подложкой.
Получение порошков средней дисперсности
Рис. 1.22. Схема процесса плазменного получения порошков: 1 - плазмотрон, 2 - камера, 3 - вращающийся кристаллизатор, 4 - частицы порошка, 5 - заготовка
Частицы порошков средней дисперсности имеют размеры в пределах (10-1000) мкм. Именно такие порошки наиболее интенсивно применяются в порошковой металлургии для изготовления изделий из металла, ферритов, керамики. Рис. 1.22 иллюстрирует процесс плазменного получения порошков средней дисперсности. Заготовка (5), расплавляясь в струе плазмотрона (1). Капли заготовки достигают вращающегося кристаллизатора, разбрызгиваются и застывают в виде монокристальных частиц размером (10-1000) мкм. Регулируя скорость вращения кристаллизатора, можно получать частицы порошка разной дисперсности.
Получение ультрадисперсных порошков. Ультрадисперсные порошки имеют размеры частиц меньше 1 мкм, то есть относятся к категории наноразмерных порошков. Дисперсность УДП составляет (10-1000) нм. Одним из самых распространенных химических методов получения высокодисперсных порошков нитридов, карбидов, боридов, оксидов является плазмохимический синтез. Основными условиями получения высокодисперсных порошков этим методом являются: протекание реакции вдали от равновесия и высокая скорость образования зародышей новой фазы при малой скорости их роста. В реальных условиях плазмохимического синтеза получение наночастиц целесообразно осуществлять за счет увеличения скорости охлаждения потока плазмы, в котором происходит конденсация из газовой фазы; благодаря этому уменьшается размер образующихся частиц, а также подавляется рост частиц путем их слияния при столкновениях. При плазмохимическом синтезе используется низкотемпературная (4000-8000) К азотная, аммиачная, углеводородная, аргоновая плазма дугового, тлеющего, высоко- или сверхвысокочастотного разрядов. Главный недостаток плазмохимического синтеза - широкое распределение частиц по размерам, и вследствие этого наличие довольно крупных (до 3 мкм) частиц.
На рис. 1.23 представлена схема получения нанопорошков оксида циркония в плазме ВЧ-разряда. Через дозирующее устройство (1) распыляется водный раствор нитрата циркония, под действием высокой температуры (4000 К) протекает реакция Zr(NO3)4 -> ZrO2+4NO2+O2. Твердый продукт реакции в виде ZrO2 собирается на дне реактора. Нанопорошки используются при приготовлении нанокерамики и других материалов, необходимых для создания материальной базы новой технической отрасли - наноэлектроники.
Рис. 1.23. Схема получения нанопорошков оксида циркония в плазме ВЧ-разряда
Использование газоразрядной плазмы в микроэлектронных технологиях.
Микроэлектроника - это отрасль электронной техники, цель которой состоит в создании устройств в микроминиатюрном исполнении.
Планарная технология является наиболее перспективным методом получения подобных устройств. Основные операции планарной технологии: нанесение тонких диэлектрических и металлических пленок на поверхность полупроводниковой пластины; создание методами литографии и травления необходимой топологии будущей микросхемы; образование электронно-дырочных переходов при легировании кристалла донорами и акцепторами. В результате этих операций отдельным участкам полупроводниковой пластины придаются свойства различных элементов: транзисторов, диодов, резисторов, конденсаторов и т.д., что в итоге и формирует интегральную микросхему.
Высокочастотная плазма широко используется в планарной технологии для проведения операций получения и травления диэлектрических и, особенно, резистивных пленок.
Топология будущей микросхемы формируется методами литографии, обеспечивающими перенос рисунка шаблона на поверхность полупроводниковой пластины. Главным элементом литографического процесса является резист, представляющий собой полимерную пленку, растворимость которой в проявителе зависит от вида и длительности облучения. В зависимости от вида радиации различают фото-, электрон- или рентгенорезисты. В литографии наибольшее распространение получили фоторезисты. В зависимости от природы полимера, в нем под действием облучения развиваются либо деструкция (разрыв химических связей), либо сшивание макромолекул (образуется объемная полимерная сетка). Это приводит к тому, что деструктирующие при облучении резисты увеличивают растворимость в проявителе, а сшивающиеся резисты, наоборот, становятся нерастворимыми. Указанные свойства полимерных резистов изменять свою растворимость после экспонирования и используются в литографии для формирования рисунка микросхемы.
Литографический процесс включает следующие этапы:
- нанесение пленки на полупроводниковую пластину,
- облучение пластины через шаблон (экспонирование),
- после облучения пластину помещают в раствор - проявитель.
В зависимости от типа используемого полимера при проявлении удаляются экспонированные или неэкспонированные области пленки. В соответствии с этим резисты делятся на позитивные и негативные. К позитивным (деструктирующим) резистам относятся полиметилметакрилат (ПММА), полибутен-1, сульфин (ПБС). Представителем сшивающихся при облучении полимеров-резистов является полиглицилметакрилатэтилакрилат.
- термическое задубливание резиста для увеличения его адгезионных свойств.
- удаление резиста хим. или плазмохимическим способами.
Наиболее эффективно травление диэлектрических пленок и удаление резиста с полупроводниковых пластин осуществляется в плазме высокочастотного разряда. Рассмотрим устройство установки «Плазма- 600», широко используемой в микроэлектронике.
Рис. 1.24. Установка «Плазма - 600»: 1 - вакуумная камера для плазменной обработки материалов, 2 - образец, 3 - нижний электрод, 4 - верхний электрод, 5 - генератор высокочастотного поля, 6 - форвакуумный насос
Установка "Плазма-600" предназначена для получения и травления диэлектрических пленок, а также для обработки поверхности материалов в плазме высокочастотного газового разряда.
Основные параметры установки: частота ВЧ-генератора - 13.56 МГц, рабочее давление в газоразрядной камере - (103 -105 ) Па, в качестве рабочего газа может использоваться воздух, кислород, аргон, пары летучих жидкостей.
Основные особенности высокочастотного разряда. Под действием ВЧ - поля электроны приобретают энергии порядка (10-100) эВ и оказываются способными эффективно ионизовать атомы и молекулы газа при соударениях. Распределение электронов по энергиям имеет сложный характер, отличный от распределения Максвелла. При давлениях газа близких к атмосферному между электродами возникает высокочастотная корона, которая при соответствующей мощности генератора переходит в высокочастотную дугу. При низких давления газа режим ВЧ-разряда близок к режиму тлеющего разряда. Высокочастотный разряд используется для образования плазмы в ионных источниках, в молекулярных лазерах для создания однородной активной среды, для осуществления плазмохимических процессов.
Электроэрозионная обработка. Описание процесса, принципы, установки электроэрозионной обрботки. |
Тлеющий разряд. Общее описание тлеющего разряда. |
Графики электрических нагрузок. |