Молниезащита
Другое
Статьи / Другое / Холодильные машины и установки. Устройство, виды, принцип действия холодильных машин.
  10.02.17  |  

Холодильные машины и установки. Устройство, виды, принцип действия холодильных машин.

1. Общие сведения о холодильных машинах


Холодильные машины и установки предназначены для искусственного снижения и поддержания пониженной температуры ниже температуры окружающей среды от 10 °С и до -153 °С в заданном охлаждаемом объекте. Машины и установки для создания более низких температур называются криогенными. Отвод и перенос теплоты осуществляется за счет потребляемой при этом энергии. Холодильная установка выполняется по проекту в зависимости от проектного задания, определяющего охлаждаемый объект, необходимого интервала температур охлаждения, источников энергии и видов охлаждающей среды (жидкая или газообразная).


Холодильная установка может состоять из одной или нескольких холодильных машин, укомплектованных вспомогательным оборудованием: системой энерго- и водоснабжения, контрольно-измерительными приборами, приборами регулирования и управления, а также системой теплообмена с охлаждаемым объектом. Холодильная установка может быть установлена в помещении, на открытом воздухе, на транспорте и в разных устройствах, в которых надо поддерживать заданную пониженную температуру и удалять излишнюю влагу воздуха.





Система теплообмена с охлаждаемым объектом может быть с непосредственным охлаждением холодильным агентом, по замкнутой системе, по разомкнутой, как при охлаждении сухим льдом, или воздухом в воздушной холодильной машине. Замкнутая система может также быть с промежуточным хладагентом, который переносит холод от холодильной установки к охлаждаемому объекту.


Началом развития холодильного машиностроения в широких размерах можно считать создание Карлом Линде в 1874 году первой аммиачной паро-компрессорной холодильной машины. С тех пор появилось много разновидностей холодильных машин, которые можно сгруппировать по принципу работы следующим образом: паро-компрессионнные, упрощенно называемые компрессорные, обычно с электроприводом; теплоиспользующие холодильные машины: абсорбционные холодильные машины и пароэжекторные; воздушно-расширительные, которые при температуре ниже -90 °С экономичнее компрессорных, и термоэлектрические, которые встраиваются в приборы.


Каждая разновидность холодильных установок и машин имеет свои особенности, по которым выбирается их область применения. В настоящее время холодильные машины и установки применяются во многих областях народного хозяйства и в быту.


2. Термодинамические циклы холодильных установок


Перенос теплоты от менее нагретого к более нагретому источнику становится возможным в случае организации какого-либо компенсирующего процесса. В связи с этим циклы холодильных установок всегда реализуются в результате затрат энергии.


Чтобы отводимая от «холодного» источника теплота могла быть отдана «горячему» источнику (обычно - окружающему воздуху), необходимо поднять температуру рабочего тела выше температуры окружающей среды. Это достигается быстрым (адиабатным) сжатием рабочего тела с затратой работы или подводом к нему теплоты извне.


В обратных циклах количество отводимой от рабочего тела теплоты всегда больше количества подводимой теплоты, а суммарная работа сжатия больше суммарной работы расширения. Благодаря этому установки, работающие по подобным циклам, являются потребителями энергии. Такие идеальные термодинамические циклы холодильных установок уже рассмотрены выше в пункте 10 темы 3. Холодильные установки различаются применяемым рабочим телом и принципом действия. Передача теплоты от «холодного» источника «горячему» может осуществляться за счет затраты работы или же затрат теплоты.





2.1. Воздушные холодильные установки


В воздушных холодильных установках в качестве рабочего тела используется воздух, а передача теплоты от «холодного» источника «горячему» осуществляется за счет затраты механической энергии. Необходимое для охлаждения холодильной камеры понижение температуры воздуха достигается в этих установках в результате быстрого его расширения, при котором время на теплообмен ограничено, и работа в основном совершается за счет внутренней энергии, в связи, с чем температура рабочего тела падает. Схема воздушной холодильной установки показана на рис 7.14



Схема воздушной холодильной установки


Рис. 14. Схема воздушной холодильной установки: ХК - холодильная камера; К - компрессор; ТО - теплообменник; Д - расширительный цилиндр (детандер)


Температура воздуха, поступающего из холодильной камеры ХК в цилиндр компрессора К, поднимается в результате адиабатного сжатия (процесс 1 - 2) выше температуры Т3 окружающей среды. При протекании воздуха по трубкам теплообменника ТО его температура при неизменном давлении понижается - теоретически до температуры окружающей среды Тз. При этом воздух отдает в окружающую среду теплоту q (Дж/кг). В результате удельный объем воздуха достигает минимального значения v3, и воздух перетекает в цилиндр расширительного цилиндра - детандера Д. В детандере, вследствие адиабатного расширения (процесс 3-4) с совершением полезной работы, эквивалентной затемненной площади 3-5-6-4-3, температура воздуха опускается ниже температуры охлаждаемых в холодильной камере предметов. Охлажденный подобным образом воздух поступает в холодильную камеру. В результате теплообмена с охлаждаемыми предметами температура воздуха при постоянном давлении (изобара 4-1) повышается до своего исходного значения (точка 1). При этом от охлаждаемых предметов к воздуху подводится теплота q2 (Дж/кг). Величина q 2, называемая хладопроизводительностью, представляет собой количество теплоты, получаемой 1 кг рабочего тела от охлаждаемых предметов.


2.2. Парокомпрессорные холодильные установки


В парокомпрессорных холодильных установках (ПКХУ) в качестве рабочего тела применяют легкокипящие жидкости (табл. 1), что позволяет реализовать процессы подвода и отвода теплоты по изотермам. Для этого используются процессы кипения и конденсации рабочего тела (хладагента) при постоянных значениях давлений.


Таблица 1.


Физические параметры хладагентов

Хладагент

Температура кипения tкип при давлении р = 0,1 МПа, °С

Критическая температура, °С

Температура замерзания, tзам, °С

Скрытая теплота парообразования при tкип, кДж/кг

Аммиак NH3

-33,7

132,4

-77,7

1370

Фреон R-12 ССl2F2

-30,6

111,5

-155,0

162

Фреон R-22 CHF2CI

-40,75

96,0

-160,0

233,5

Фреон R-134A CF3CFH2

-26,1

101,1

-101,0

217,1





В XX веке в качестве хладагентов широко применяли различные фреоны на основе фторхлоруглеродов. Они вызывали активное разрушение озонового слоя, в связи, с чем в настоящее время их применение ограничено, и в качестве основного хладагента используют хладагент К- 134А (открыт в 1992 году) на основе этана. Его термодинамические свойства близки к свойствам фреона К-12. У обоих хладагентов несущественно различаются молекулярные массы, теплоты парообразования и температуры кипения, но, в отличие от К-12, хладагент К-134А не агрессивен по отношению к озоновому слою Земли.


Схема ПКХУ и цикл в T-s-координатах показаны на рис. 15 и 16. В ПКХУ понижение давления и температуры осуществляется дросселированием хладагента при его протекании через редукционный вентиль РВ, проходное сечение которого может изменяться.


Хладагент из холодильной камеры ХК поступает в компрессор К, в котором адиабатно сжимается в процессе 1 -2. Образующийся при этом сухой насыщенный пар поступает в КД, где конденсируется при постоянных значениях давления и температуры в процессе 2-3. Выделяющаяся теплота q1 отводится к «горячему» источнику, которым в большинстве случаев является окружающий воздух. Образовавшийся конденсат дросселируется в редукционном вентиле РВ с переменным проходным сечением, что позволяет изменять давление выходящего из него влажного пара (процесс 3-4).



Принципиальная схема и цикл в T-s-координатах парокомпрессорной холодильной установки


Рис. 15. Принципиальная схема (а) и цикл в T-s-координатах (б) парокомпрессорной холодильной установки: КД - конденсатор; К - компрессор; ХК - холодильная камера; РВ - редукционный вентиль


Поскольку протекающий при неизменном значении энтальпии (h3 - h) процесс дросселирования необратим, его изображают пунктирной линией. Полученный в результате процесса влажный насыщенный пар небольшой степени сухости попадает в теплообменник холодильной камеры, где при постоянных значениях давления и температуры испаряется за счет теплоты q2b отбираемой от находящихся в камере предметов (процесс 4-1).



Принципиальная схема парокомпрессорного холодильника


Рис. 16. Принципиальная схема парокомпрессорного холодильника: 1 - холодильная камера; 2 - теплоизоляция; 3 - компрессор; 4 - сжатый горячий пар; 5 - теплообменник; 6 - охлаждающий воздух или охлаждающая вода; 7 - жидкий хладагент; 8 - дроссельный вентиль (расширитель); 9 - расширившаяся, охлажденная и частично испарившаяся жидкость; 10 - охладитель (испаритель); 11 - испарившийся теплоноситель





В результате «подсушивания» степень сухости хладагента растет. Количество теплоты, отбираемой у охлаждаемых в холодильной камере предметов, в Т-Б-координатах определяется площадью прямоугольника под изотермой 4-1.


Использование в ПКХУ легкокипящих жидкостей в качестве рабочего тела позволяет приблизиться к обратному циклу Карно.


Вместо дросселирующего вентиля для понижения температуры можно использовать и расширительный цилиндр - детандер (см. рис. 14). При этом установка будет работать по обратному циклу Карно (12-3-5-1). Тогда теплота, отбираемая у охлаждаемых предметов, будет большей - она определится площадью под изотермой 5-4-1. Несмотря на частичную компенсацию затрат энергии на привод компрессора положительной работой, получаемой при расширении хладагента в расширительном цилиндре, такие установки не применяют ввиду их конструктивной сложности и больших габаритных размеров. К тому же в установках с дросселем переменного сечения гораздо проще регулировать температуру в холодильной камере.



Цикл парокомпрессорной холодильной установки с перегревом рабочего тела


Рис 17. Цикл парокомпрессорной холодильной установки с перегревом рабочего тела


Для этого достаточно лишь изменить площадь проходного сечения дросселирующего вентиля, что приводит к изменению давления и соответствующей ему температуры насыщенных паров хладагента на выходе из вентиля.


В настоящее время вместо поршневых компрессоров в основном используют лопаточные компрессоры (рис. 18). О большей экономичности ПКХУ по сравнению с воздушными установками свидетельствует и тот факт, что отношение холодильных коэффициентов ПКХУ и обратного цикла Карно <= 0,85, т.е. достаточно высокое.


В реальных парокомпрессорных установках из теплообменника- испарителя холодильной камеры в компрессор поступает не влажный, а сухой или даже перегретый пар (рис. 17). Это увеличивает отводимую теплоту q2, уменьшает интенсивность теплообмена хладагента со стенками цилиндра и улучшает условия смазывания поршневой группы компрессора. В подобном цикле в конденсаторе происходит некоторое переохлаждение рабочего тела (участок изобары 4-5).



Теоретический цикл и принципиальная схема холодильной установки, работающей по обратному обратимому циклу Карно


Рис. 18. Теоретический цикл и принципиальная схема холодильной установки, работающей по обратному обратимому циклу Карно


2.3. Пароэжекторные холодильные установки


Цикл пароэжекторной холодильной установки (рис. 19 и 20) также осуществляют за счет затраты тепловой, а не механической энергии.



Принципиальная схема пароэжекторной холодильной установки


Рис. 19. Принципиальная схема пароэжекторной холодильной установки: ХК - холодильная камера; Э - эжектор; КД - конденсатор; РВ - редукционный вентиль; Н - насос; КА - котельный агрегат



Схема пароэжекторной холодильной установки со смешивающим конденсатором


Рис. 20. Схема пароэжекторной холодильной установки со смешивающим конденсатором


При этом компенсирующим является самопроизвольный перенос теплоты от более нагретого тела к менее нагретому телу. В качестве рабочего тела может использоваться пар любой жидкости. Однако обычно используют самый дешевый и доступный хладагент - водяной пар при низких значениях давления и температуры.


Из котельной установки пар поступает в сопло эжектора Э. При истечении пара с большой скоростью в камере смешения за соплом создается разрежение, под действием которого в камеру смешения подсасывается хладагент из холодильной камеры ХК. В диффузоре эжектора скорость смеси уменьшается, а давление и температура растут. Затем паровая смесь поступает в конденсатор КД, где превращается в жидкость в результате отведения в окружающую среду теплоты q1. В связи с многократным уменьшением удельного объема в процессе конденсации давление понижается до значения, при котором температура насыщения приблизительно равна 20 °С. Одна часть конденсата перекачивается насосом Н в котельный агрегат КА, а другая - подвергается дросселированию в вентиле РВ, в результате чего при понижении давления и температуры образуется влажный пар с небольшой степенью сухости. В теплообменнике-испарителе ХК этот пар подсушивается при постоянной температуре, отбирая теплоту q2 у охлаждаемых предметов, а затем вновь поступает в паровой эжектор.


Поскольку затраты механической энергии на перекачивание жидкой фазы в абсорбционных и пароэжекторных холодильных установках крайне малы, ими пренебрегают, и эффективность таких установок оценивают коэффициентом теплоиспользования, представляющим собой отношение отбираемой от охлаждаемых предметов теплоты к теплоте, используемой для реализации циклов.


Для получения низких температур в результате переноса теплоты к «горячему» источнику принципиально могут использовать и иные принципы. Например, температуру можно понижать в результате испарения воды. Этот принцип применяют в условиях жаркого и сухого климата в испарительных кондиционерах.


3. Бытовые и промышленные холодильники


Холодильник - устройство, поддерживающее низкую температуру в теплоизолированной камере. Обычно их применяют для хранения пищи и других предметов, требующих хранения в холодном месте.


На рис. 21 показана схема работы однокамерного холодильника, а на рис. 22 - назначение основных частей холодильника.



Схема работы однокамерного холодильника


Рис. 21. Схема работы однокамерного холодильника



Назначение основных частей бытового холодильника




Рис. 22. Назначение основных частей бытового холодильника


Работа холодильника основана на применении теплового насоса, переносящего теплоту из рабочей камеры холодильника наружу, где оно отдается внешней среде. В промышленных холодильниках объём рабочей камеры может достигать десятков и сотен м3.


Холодильники могут быть двух видов: среднетемпературные камеры для хранения продуктов и низкотемпературные морозильники. Однако в последнее время наибольшее распространение получили двухкамерные холодильники, включающие в себя оба компонента.


Холодильники бывают четырех типов: 1 - компрессионные; 2 - абсорбционные; 3 - термоэлектрические; 4 - с вихревыми охладителями.


Схема работы холодильника


Рис. 23. Схема работы холодильника: 1 - конденсатор; 2 - капилляр; 3 - испаритель; 4 - компрессор


Основные составные части холодильника


Рис. 24. Основные составные части холодильника


Основными составляющими частями холодильника являются:


1 - компрессор, получающий энергию от электрической сети;


2 - конденсатор, находящийся снаружи холодильника;


3 - испаритель, находящийся внутри холодильника;


4 - терморегулирующий расширительный вентиль (ТРВ), являющийся дросселирующим устройством;


5 - хладагент (циркулирующее в системе вещество с определёнными физическими характеристиками - обычно им является фреон).


3.1. Принцип работы компрессионного холодильника


Теоретической основой, на которой построен принцип работы холодильников, схема которых показана на рис. 23, является второе начало термодинамики. Охлаждающий газ в холодильниках совершает так называемый обратный цикл Карно. При этом основная передача теплоты основана не на цикле Карно, а на фазовых переходах - испарении и конденсации. В принципе возможно создание холодильника использующего только цикл Карно, но при этом для достижения высокой производительности потребуется или компрессор, создающий очень высокое давление, или очень большая площадь охлаждающего и нагревающего теплообменника.


Хладагент поступает в испаритель под давлением через дросселирующее отверстие (капилляр или ТРВ), где за счёт резкого уменьшения давления происходит испарение жидкости и превращение ее в пар. При этом хладагент отнимает теплоту у внутренних стенок испарителя, за счёт чего происходит охлаждение внутреннего пространства холодильника. Компрессор засасывает из испарителя хладагент в виде пара, сжимает его, за счёт чего температура хладагента повышается и выталкивает в конденсатор. В конденсаторе нагретый в результате сжатия хладагент остывает, отдавая теплоту во внешнюю среду, и конденсируется, т.е. превращается в жидкость. Процесс повторяется вновь. Таким образом, в конденсаторе хладагент (обычно им является фреон) под воздействием высокого давления конденсируется и переходит в жидкое состояние, выделяя теплоту, а в испарителе под воздействием низкого давления хладагент вскипает и переходит в газообразное, поглощая теплоту.


Терморегулирующий вентиль (ТРВ) необходим для создания необходимой разности давлений между конденсатором и испарителем, при которой происходит цикл теплопередачи. Он позволяет правильно (наиболее полно) заполнять внутренний объем испарителя вскипевшим хладагентом. Пропускное сечение ТРВ изменяется по мере снижения тепловой нагрузки на испаритель, причем при понижении температуры в камере количество циркулирующего хладагента уменьшается. Капилляр - это аналог ТРВ. Он не меняет свое сечение, а дросселирует определенное количество хладагента, зависящее от давления на входе и выходе капилляра, его диаметра и типа хладагента.


При достижении необходимой температуры температурный датчик размыкает электрическую цепь и компрессор останавливается. При повышении температуры (за счёт внешних факторов) датчик вновь включает компрессор.


3.2. Принцип работы абсорбционного холодильника


В абсорбционном водо-аммиачном холодильнике используется свойство одного из широко распространённых хладагентов - аммиака - хорошо растворяться в воде (до 1000 объёмов аммиака на 1 объём воды). Принцип работы абсорбционной холодильной установки показан на рис. 26, а ее принципиальная схема - на рис. 27.


Принцип работы абсорбционной холодильной установки


Рис. 26. Принцип работы абсорбционной холодильной установки


Принципиальная схема абсорбционной холодильной установки


Рис. 27. Принципиальная схема абсорбционной холодильной установки: ГП - генератор пара; КД - конденсатор; РВ1, РВ2 - редукционные вентили; ХК - холодильная камера; Аб - абсорбер; Н - насос


В этом случае требуемое для любого испарительного холодильника удаление газообразного хладагента из змеевика испарителя ведут поглощением его водой, раствор аммиака в которой затем перекачивают в специальную ёмкость (десорбер/генератор) и там подвергают разложению на аммиак и воду путём нагрева. Пары аммиака и воды из неё под давлением поступают в устройство разделения (ректификационная колонна), где пары аммиака отделяются от воды. Далее практически чистый аммиак попадает в конденсатор, где, охлаждаясь, конденсируется и через дроссель снова поступает в испаритель для испарения. Такая тепловая машина может использовать для перекачки раствора хладагента разнообразные приспособления, в том числе и струйные насосы, и не иметь движущихся механических частей. Помимо аммиака и воды, могут использоваться и другие пары веществ - например, раствор бромистого лития, ацетилен и ацетон. Преимущества абсорбционных холодильников - бесшумность работы, отсутствие движущихся механических частей, возможность работы от нагрева прямым сжиганием топлива, недостаток - низкая холодопроизводительность на единицу объёма.





3.3. Принцип работы термоэлектрического холодильника


Существуют устройства, основанные на эффекте Пельтье, заключающемся в поглощении теплоты одним из спаев термопар (разнородных проводников) при выделении ее на другом спае в случае пропускания через них тока. Этот принцип используют, в частности, в сумках-кулерах. Возможно как понижение, так и повышение температуры с помощью предложенных французским инженером Ранком вихревых трубок, в которых температура существенно изменяется по радиусу движущегося в них закрученного вихревого воздушного потока.


Термоэлектрический холодильник основан на элементах Пельтье. Он бесшумен, но распространен мало из-за дороговизны охлаждающих термоэлектрических элементов. Однако небольшие автомобильные холодильники и охладители питьевой воды часто производят с охлаждением от элементов Пельтье.


3.4. Принцип работы холодильника на вихревых охладителях


Охлаждение осуществляется за счёт расширения предварительно сжатого компрессором воздуха в блоках специальных вихревых охладителей. Они распространены мало из-за большой шумности, необходимости подвода сжатого (до 1,0-2,0 МПа) воздуха и очень большого его расхода, низкого КПД. Достоинства - большая безопасность (не используется электричество, нет движущихся частей и опасных химических соединений), долговечность и надёжность.


4. Примеры холодильных установок


Некоторые схемы и описания холодильных установок различного назначения, а также их фотографии показаны на рис. 27-34.


Принципиальная схема холодильной установки


Рис. 27. Принципиальная схема холодильной установки



Особенности работы холодильной установки в автомобиле


Рис. 28. Особенности работы холодильной установки в автомобиле



Схема монтажа холодильной системы «Вьюга-Стандарт» на автофургон


Рис. 29. Схема монтажа холодильной системы «Вьюга-Стандарт» на автофургон



Примеры схем соединения оборудования в холодильных установках


Рис 32. Примеры схем соединения оборудования в холодильных установках


Внешний вид некоторых холодильных установок


Рис. 33. Внешний вид некоторых холодильных установок


Например, холодильные установки компрессорно-конденсаторные (тип АКК) или компрессорно-рессиверные (тип АКР), показанные на рис. 34, предназначены для работы c поддержанием температуры от +15 °С до -40 °С в камерах объёмом от 12 до 2500 м3.


В состав холодильной установки входят: 1 - компрессорно-конденсаторный или компрессорно -рессиверный агрегат; 2 - воздухоохладитель; 3 - терморегулирующий вентиль (ТРВ); 4 - соленоидный вентиль; 5 - щит управления.



Некоторые холодильные установки типов АКК и АКР


Рис. 34. Некоторые холодильные установки типов АКК и АКР



Другие статьи:

Компрессор. Принцип действия, устройство, виды компрессоров.
Особенности размещения котлов и дымоходов в домах
Основные элементы паровых и водогрейных котлов