Молниезащита
Кабель и провод
Статьи / Кабель и провод / Кабели и провода с поливинилхлоридной изоляцией ПВХ. Обзор технологий прокладки и защиты кабеля.
  14.06.11  |  

Кабели и провода с поливинилхлоридной изоляцией ПВХ. Обзор технологий прокладки и защиты кабеля.

Кабели и провода с поливинилхлоридной изоляцией ПВХ. Обзор технологий прокладки и защиты кабеля.
Одними из источников возникновения пожаров в жилищно-коммунальном хозяйстве и культурно-просветительных, офисных и административных зданиях являются электрические сети.

В настоящее время наиболее распространенные в жилищно-коммунальном секторе для электроснабжения потребителей получили марки электропроводов и кабелей с поливинилхлоридной изоляцией ПВХ (табл.1)

МаркаСечение, мм2Количество жил.Технические характеристики
АПВ2,5. ..1201Провод с алюминиевой жилой и изоляцией из ПВХ
АППВ2,5...62; 3Провод с алюминиевыми жилами, с изоляцией из ПВХ, плоский
АВВГ2,5...501; 2; 3; 4Кабель силовой с алюминиевыми жилами, с изоляцией из ПВХ, в оболочке из ПВХ
АВРГ2,2...302; 3; 4Кабель силовой с алюминиевыми жилами, с резиновой изоляцией, в оболочке из ПВХ
АПВГ2,5...501; 2; 3;4Кабель силовой с алюминиевыми жилами, с полиэтиленовой изоляцией, в оболочке из ПВХ
ВРГ1 ...2401; 2; 3,4Кабель силовой с медными жилами, с изоляцией из ПВХ, в оболочке из ПВХ
ПВГ1,5...501; 2; 3; 4Шнур гибкий со скрученными жилами с изоляцией из ПВХ
ШПС0,5...0,752; 3Шнур со скрученными жилами, с изоляцией из ПВХ, в оболочке из ПВХ, подвесной





Таблица 1

Краткая характеристика физико-механических свойств поливинилхлорида

Поливинилхлорид (ПВХ) представляет собой твердый при обычной температуре термопластичный полимер аморфной, т.е. бесформенной структуры, в котором его свойства (механические, электрические и др.) в естественных условиях одинаковы по всем направлениям.

Электроизоляционные свойства ПВХ сравнительно невысоки (26...28 МВ/м). Однако вследствие ряда положительных характеристик (устойчивость к действию кислот, щелочей и растворов солей) ПВХ нашел широкое применение как изолятор, в частности, при изоляции электропроводов и кабелей.

Длительная рабочая температура ПВХ составляет 80...90°С Выше 1 40°С ПВХ начинает разлагаться с выделением хлористого водорода. При этом физико-механические свойства ПВХ ухудшаются: снижаются объемное электрическое сопротивление и механическая прочность (уменьшается величина относительного удлинения при разрыве, возрастает хрупкость). Выделяющийся хлористый водород вредно действует на человека (особенно при пожарах) и вызывает коррозию расположенных вблизи материалов. При повышенной температуре ПВХ горит, но не поддерживает горения. Температура самовоспламенения ПВХ 454...495°С. При горении ПВХ образуется густой и плотный дым и выделяется большое количество тепла. Теплотворная способность изоляции из ПВХ составляет 5949 ккал/кг. Для сравнения можно привести данные о теплотворной способности древесины, в частности дуба, - 2500 ккал/кг. Это означает, что при сгорании 1 кг изоляции из ПВХ выделяется тепла в 2,4 раза больше, чем из высококалорийной древесины.

Заметное ухудшение свойств ПВХ наблюдается при световом воздействии, в основном за счет ультрафиолетовых излучений. Для защиты ПВХ от светового воздействия в него добавляют разного рода пигменты (сажа, двуокись титана и др.), которые, являясь экраном, поглощают ультрафиолетовые излучения.





Основные причины повреждения изоляции из ПВХ

К основным причинам повреждения изоляции электропроводок и кабелей из ПВХ можно отнести:
• заводской брак;
• механические повреждения;
• естественное старение изоляции в процессе эксплуатации;
• световое воздействие;
• токовая перегрузка проводов;
• воздействие агрессивной среды.
Заводской брак изоляции из ПВХ в основном связан с уменьшением содержания пластификатора в поливинилхпоридном пластикате. Так, по данным уменьшение пластификатора в пластикате марки ИРМ-40 до 20 массовых частей приводит к образованию трещин в изоляции при температуре -15°С во время монтажных изгибов проводов.

За последние годы при скрытой прокладке электропроводки в жилых домах силовые кабели прокладывают в специальных гибких гофрированных трубах, обладающих высоким уровнем сопротивления изоляции (не менее 100 МОм и 500 В в течение 1 мин) и огнестойкостью (способность загораться при температуре не менее чем 650°С). К сожалению, некоторые украинские производители сознательно идут на нарушение технологии производства указанной продукции, изготовляя трубы из вторичного сырья, изменяя физические характеристики продукции. По данным, это приводит к повышенной ломкости материала и потере прочности при температурных изменениях, что, разумеется, отрицательно влияет на долговечность и безопасную эксплуатацию электросетей.

Механические повреждения изоляции происходят в основном при транспортировке и халатном хранении кабельной продукции и монтаже электропроводок (особенно на изгибах при прокладке через стены и межкомнатные перегородки).

Старение изоляции в процессе длительной эксплуатации, на наш взгляд является основной причиной возникновения пожаров. Поданным, процессом, приводящим к старению изоляции, является естественное удаление (потеря) пластификатора из ПВХ пластиката. Именно от этого зависит дальнейшая работоспособность изоляции электропровода.

В процессе старения изоляции из ПВХ наблюдается уменьшение холодостойкости кабелей и проводов, что может стать показателем отказа их работы. При механических воздействиях на электропроводку или кабель при низких температурах (-1 5°С и менее) наблюдается растрескивание изоляции. Кроме того, при длительной эксплуатации электропроводов наблюдается изменение геометрических размеров изоляции, в основном уменьшение наружного диаметра. Произведенные исследования показали, что происходящая при старении изоляции из ПВХ потеря пластификатора сопровождается увеличением плотности и усадкой изоляции. Очевидно, что измерение наружного диаметра электропроводки в процессе эксплуатации в определенных условиях может служить показателем для диагностики изоляции из ПВХ.

Световое воздействие на изоляцию можно объяснить за счет проникновения ультрафиолетовых лучей в толщу термопластичного полимера ПВХ. Исследования автора показывают, что при отсутствии светового воздействия на электропровода относительное удлинение и прочность изоляции из ПВХ снижаются незначительно. Заметной разницы в механических характеристиках изоляции, пигментированной различными цветами, не имеется. Наиболее эффективным с точки зрения оптической стойкости является синий цвет, наименее - красный и натуральный. Пигментация изоляции различными цветами, подвергаемых атмосферному старению (на открытом воздухе), защищает ее от разрушительного старения не более 2...2,5 лет. При атмосферном воздействии трещинообразование в микроструктуре материала идет интенсивно. Растет не только число трещин, но и их размеры. Интенсивность солнечной радиации убывает от наружной поверхности к внутренней. Все это ведет к снижению как механических, так и электрических характеристик изоляции. Таким образом, можно сделать вывод что прокладка электропроводок открыто на воздухе нежелательна. А если этого избежать нельзя, то электропроводку и силовые кабели следует прокладывать в трубах (металлических, гладких или гофрированных из пластификатора).




Токовая перегрузка в проводах электрической сети может наступить в основном в двух возможных часто встречающихся случаях: при коротком замыкании вследствие плотного контакта фазного и нулевого оголенных по какой-либо причине проводов и при механических, даже незначительных повреждениях изоляции или по причине ее старения.

В первом случае в результате прямого короткого замыкания электрическая сеть защищается устройством защитного отключения (разумеется, при его надежной работе). Возможность возникновения пожаров в таких случаях, как правило, маловероятна (разумеется, если в месте возникновения короткого замыкания отсутствует легковоспламеняющиеся предметы). Во втором случае процесс развития токовой перегрузки происходит постепенно. И это является очень опасным, так как устройство защитного отключения не сразу может среагировать (или даже совсем не успеть это сделать) на токовую перегрузку.

Примечание. Предусматривается допустимое нагревание проводника не более 55°С. В случаях активных нагрузок предусматривается применение нулевой жилы одинакового сечения или симметричный 4-проводный кабель.
Табл.2

Наблюдениями установлено, что даже микроскопические повреждения изоляции вызывают точечный ток утечки и местный нагрев изоляции. Со временем между жилами, имеющими механические повреждения изоляции, накапливаются пыль и прочие виды грязи, поселяются в утепленное место от токов утечки насекомые. Все это при увлажнении становится электропроводной средой. В последующей эксплуатации электропроводки между фазовым и нулевым проводами возникает электрическая цепь: сначала обугливается изоляция в месте повреждения ее, ток утечки и температура цепи увеличиваются, что в конечном итоге приводит сначала к местному возгоранию изоляции, появлению устойчивой дуги и пожару.
Нельзя не отметить в этой связи случаи возникновения пожаров, когда электрическая сеть перегружается из-за того, что вместо калиброванных плавких вставок в предохранителях устанавливаются печально известные «жучки» с сечениями, значительно превышающими сечения калиброванных вставок. В этом случае при перегрузке электросети изоляция воспламеняется, и пожар становится неизбежным. Экспериментальным путем установлено, что ток в 300 мА выделяет энергию, недостаточную для возгорания стандартных строительных материалов. Поэтому устройство защитного отключения с таким номинальным током утечки является эффективным средством защиты от пожара, особенно в местах хранения легковоспламеняющихся материалов.




Автор рекомендует выбирать марки проводов для питания потребителей той или иной мощности (таблица 2).

Сечение

Диаметр жилы

Ориентировочная мощность

жилы

проводника

потребителя электроэнергии

проводника.

без учета

Медная

Алюминиевая

мм

изоляции.

жила

жила

 

мм

проводника

проводника

 

 

кВт

Ампер

кВт

Ампер

 

 

на фазу

на фазу

на фазу

на фазу

0,5

0,8

1

4,5

-

-

0,75

1

1,5

6,8

-

-

1

1,13

2

9,1

-

-

1,5

1,38

3

13,6

-

-

2,5

1,78

5

22,7

3,5

15,9

4

2,26

6

27,3

5

22,7

6

2,76

8

36,4

6

27,3

10

3,57

12

54,5

8

36,4

16

4,51

18

81,8

12

54,5

25

5,64

22

100

16

72,7






Воздействие агрессивной среды. Сюда можно отнести:
• увлажнение проводов;
• перегрев проводов от посторонних источников тепла;
• действия грызунов;
• насыщенность воздушного пространства помещений ядовитыми газами и т.п.

Увлажнение изоляции происходит при прокладке электропроводок в помещениях, когда нарушаются требования ПУЭ, предусматривающие, чтобы при пересечении проводов или параллельном их следовании, например, с водопроводными трубами расстояния между ними были не менее 50 мм. Автор статьи уже анализировал причину несчастного случая, когда в результате постоянной конденсации на поверхности водопроводной трубы ПВХ изоляция провода, касающегося трубы, в течение длительной эксплуатации пришла в негодность и перестала представлять сопротивление для электрического тока.
При прокладке электропроводов вблизи посторонних источников тепла наблюдается уменьшение наружного диаметра провода с изоляцией из ПВХ, что ускоряет процесс ее старения.
Повреждения изоляции электропроводов и кабелей грызунами наблюдаются в кабельных каналах, размещенных на открытых распределительных устройствах подстанций и в подвальных помещениях жилых домов.

В помещениях с высокой насыщенностью воздушного пространства ядовитыми газами, таких, как коровники и, особенно, свинарники и птичники, шахты и пр., применяются специальные методы прокладки проводов и кабелей с защищенной изоляцией. Ввиду ограниченности объема статьи этот вопрос автором не рассматривается.

Обзор новых технологий прокладки и защиты электропроводок и кабелей

Очевидно, что для предотвращения пожаров изоляция электропроводок и электрических силовых кабелей должна обладать совокупностью противопожарных свойств и, главное, способностью по нераспространению горения, выделению дыма, коррозионно-активных веществ и токсичных продуктов при воздействии открытого пламени.

Некоторые зарубежные фирмы производят и поставляют силовые кабели с однопроволочными и многопрово-лочными медными жилами (рис.1). Изоляция и внешняя оболочка кабелей выполнена из самозатухающегося и трудно воспламеняющегося ПВХ пластиката. Пределы допустимой температуры окружающей среды кабеля: при монтажных и эксплуатационных изгибах от -5°С до +50°С; при условии эксплуатации в фиксированном (неподвижном) состоянии от -30°С до +70°С. Кабель рекомендуется применять для энергопитания и распределительных и силовых установок, подключения домов и уличного освещения. Максимальные допустимые напряжения:
• однофазные системы переменного тока - 1,4 кВ;
• трехфазные системы с заземленной жилой - 1,2 кВ.
Испытательное напряжение 4 кВ, переменный ток 50 Гц.

Кабеля из сшитого полиэтилена

Известно новое поколение силовых низковольтных кабелей из так называемого сшитого полиэтилена. Их характерные особенности: они устойчивы к воздействию агрессивных почв; более экологически чисты и надежны в эксплуатации. Коэффициент их повреждаемости сводится к минимуму. Кабели с изоляцией из сшитого полиэтилена (рис.2) гораздо надежнее, требуют меньших расходов на монтаж, реконструкцию и эксплуатационное содержание. Одним из главных преимуществ кабелей с изоляцией из сшитого полиэтилена является большая пропускная способность за счет увеличения допустимой температуры жилы Дополнительные токи нагрузки в зависимости от условий прокладки на 15...30% больше, чем у кабелей с бумажной изоляцией. Это достигается за счет увеличения рабочей температуры жил до 90°С (вместо 70°С) и высокого тока термической устойчивости при коротком замыкании в электрической сети.

Отмечается также высокая влагостойкость кабеля, не требующая применения металлической оболочки. Однако, внедряя эти кабели в производство, следует также учитывать мнение и озабоченность некоторых отечественных специалистов в области кабельной продукции относительно пожаробезопасности подобных кабелей Очевидно, что во всех случаях, приобретая такие кабели, следует требовать от поставщиков сертификаты на их качество.

Защитные трубы и системы укладки

Не последнюю роль в обеспечении безопасной и длительной эксплуатации электропроводов и кабелей с изоляцией из ПВХ играют защитные трубы (металлические и из пластификата). Так, рекомендуются пластиковые гладкие жесткие и гофрированные гибкие трубы из материала ПВХ, предназначенные для удобства прокладки силовых и сигнальных электрических сетей внутри и снаружи помещений. Основными достоинствами материала таких труб (рис.3) является то, что он не поддерживает горения, его степень защиты IP65. Температура монтажа -5...+60°С, рабочая -25....+60°С плавления +650°С. Сопротивление изоляции более 100 МОм.
Прокладка электропроводов и кабелей в пластмассовых трубах защищает их от пыли, загрязнений, ультрафиолетового излучения и механических воздействий. Трубы успешно прошли сертификационные испытания в отечественных государственных лабораториях и соответствуют п.2.1. ГОСТ 12.1.044-89 по группе горючести как «тяжелогорючие»

Выводы

В заключение можно заметить, что для обеспечения безаварийной и длительной эксплуатации необходимо проводить в соответствии с требованиями ПУЭ в установленные сроки обязательные комплексные профилактические испытания электрических сетей и электрооборудования, в частности измерение сопротивления изоляции силовой и осветительной электропроводки, проверку величин токов короткого замыкания петли фаза-нуль, испытания средств защиты, а также измерение сопротивления основных заземлителей и заземляющих магистралей оборудования.
Можно также рекомендовать получивший распространение за последние годы тепловизионный контроль теплового состояния электрооборудования. Применение такого способа контроля позволяет на самой ранней стадии возникновения обнаруживать дефекты изоляции проводов и кабелей с повышенной температурой в местах ее повреждения, а также предвидеть степень его последующего развития и вырабатывать рекомендации по устранению таких дефектов.

Николай Марфин


Другие статьи:

Современные системы антиобледенения. Жизнь без сосулек!
Соединение проводов в распределительной коробке
Заземление кабелей и кабельных конструкций