Молниезащита
Измерительная техника
Статьи / Измерительная техника / Теплосчетчик и тепловычислитель. Устройство, принцип действия, характеристики теплосчетчиков, тепловычислителей, счетчиков тепла.
  30.12.11  |  

Теплосчетчик и тепловычислитель. Устройство, принцип действия, характеристики теплосчетчиков, тепловычислителей, счетчиков тепла.

Теплосчетчик — средство измерения, предназначенное для определения количества теплоты. Количество теплоты обычно выражается в гигаджоулях (ГДж) или гигакалориях (Гкал), 1 Гкал  = 4,1868 ГДж.

Теплосчетчики получили широкое распространение, поскольку по их показаниям производятся расчеты за полученную потребителями теплоту. Теплосчетчики устанавливаются как на источниках теплоты: ТЭЦ, РТС (районные тепловые станции), так и у потребителей, теплоносителем служит вода, редко — пар. Все выпускаемые в настоящее время теплосчетчики являются многофункциональными микропроцессорными приборами, включающими в свой состав измерители температуры, расхода, давления и тепловычислители. Они имеют защиту от несанкционированного доступа, а используемые в них программы и заложенные функциональные возможности исходят из действующих правил как учета теплоты и теплоносителя, так и теплопотребления.

Алгоритмы расчета количества теплоты. Реализуемые в теплосчетчиках алгоритмы расчета теплоты зависят от вида теплоносителя и структуры системы отпуска теплоты. Последняя, изображенная на рис. 1, может быть закрытой, когда количество теплоносителя в системе теплоснабжения остается постоянным, и открытой, когда количество теплоносителя меняется из-за отпуска теплоносителя на нужды горячего водоснабжения, подпитку независимой системы теплоснабжения, из-за утечек.





Схема закрытой системы теплоснабжения

Рис. 1. Схема закрытой системы теплоснабжения

Для расчета количества теплоты по выражениям необходимо измерять расходы теплоносителя, температуры, давления и суммировать результаты расчета во времени. Определение количества теплоты представляет собой косвенное измерение, его погрешность зависит:

•             от погрешностей первичных средств измерения расхода или его разности, разности температур и давления;

•             от алгоритма расчета теплоты;

•             от погрешности тепловычислителя, которая помимо инструментальной погрешности включает погрешности расчетных соотношений, аппроксимирующих теплофизические свойства воды и пара.

Обычно погрешности тепловычислителя при расчете теплоты составляют ±(0,1...0,25) %, для измерения разности температур используются парные термопреобразователи сопротивления. Минимальные погрешности имеют теплосчетчики для закрытых систем теплоснабжения, реализующих алгоритм.

Наиболее распространенные теплосчетчики имеют пределы относительной погрешности от ±3 до ± 6 % в зависимости от измеряемой разности температур. При оценке погрешностей этих теплосчетчиков для закрытых систем теплоснабжения суммируются пределы относительных погрешностей измерения расхода, разности температур и тепловычислителя.

В открытых системах водяного теплоснабжения и при теплоносителе паре, погрешности существенно возрастают из-за присутствия в алгоритме расчета двух и более значений расходов и их разностей. Для снижения погрешностей рекомендуется использовать расходомеры с согласованными характеристиками, подобно парным термопреобразователям. При непосредственном измерении расхода подпиточной воды погрешность учета ниже.

Состав теплосчетчиков. Разнообразие теплосчетчиков отражает многообразие требований потребителей этих приборов. Теплосчетчики стоят на магистралях ТЭЦ с диаметрами трубопроводов до 1400 мм и на трубках диаметром 10... 12 мм в квартирах и небольших офисах. Число трубопроводов, по которым теплосчетчик производит расчет теплоты, может варьироваться в пределах десятка. При всем многообразии теплосчетчиков в их составе обязательно присутствуют термопреобразователи, измерители расхода и тепловычислители. Теплосчетчики можно разделить по следующим признакам:

•             по типу используемых преобразователей расхода;

•             по диаметрам трубопроводов теплоносителя;

•             по диапазону измеряемых расходов Gmax/Gmin;

•             по количеству потоков теплоносителя (каналов).

В табл. 1 для некоторых типов теплосчетчиков приведены характеристики по указанным признакам.

Таблица 1 Характеристики теплосчетчиков

Тип преобразователя расхода

Наименование теплосчетчика

Диаметр трубопровода, мм

Динамический диапазон

Qmax/Qmin

Число каналов по расходу

Диафрагма с дифманомерами

СПТ-961

СТД*

50...1200

»

<3 при одном дифманометре

»

4

10

Тахометриче­ские

СТ-З

15…250

50

1

КСТ

15...250

50

4

ТСК-4М

15...250

25

4

Электромагнитные

SA-9304

10....400

50

4

Взлет TCP**

10...200

85

4

ТРЭМ-ТС

10...300

500

6

ТС-06

15...200

100

4

ВИС.Т

15...300

250

5

ВИС.Т (ТС-П)

400...4000

100

4

ТЭМ-05

15…150

50

3

РОСТ-8.1

400...4000

50

2

Эксперт-МТ

25...80

100

5

КМ-5

15...300

500

6

РМ-5-БЗ

300...5000

100

1

Вихревые

Метран-400***

25...200

80

2

Таран

15...300

40

8

КСТ-В

15...350

60

2

Макло

25...200

40

6

Ультразвуковые

Взлет TCP

10...4200

150

4

UFEC 005

15...1600

150

2

Multical UF

15...250

200

4

ТСК-4М

15...250

33

4

 

*) Теплосчетчик СТД может работать со всеми типами расходомеров, с зависящими от их типа характеристиками по диапазонам Ду и Qmax/Qmin

**) К теплосчетчику «Взлет TCP» дополнительно могут быть подключены два расходомера с импульсным выходом.

***) Тепловычислитель «Метран-410» может работать с четырьмя расходомерами, имеющими импульсный выходной сигнал: тахометрическими (BCT, ВМГ), вихреакустнческими («Метран-300 ПР») и акустическими (ДРК-С).

Поскольку погрешности измерения теплоты зависят от погрешности измерения разности температур, то в подавляющем большинстве теплосчетчиков используются комплекты платиновых термопреобразователей с согласованными характеристиками типа КТПТР, КТСП, КТП и др.

Тепловычислители по конструкции и функциональным возможностям существенно отличаются от рассмотренных выше вторичных приборов. Действующие в РФ правила учета теплоты и теплоносителя, теплопотребления предписывают производить не только расчет количества полученной теплоты, но и обеспечить контроль режима теплопотребления. При этом должна фиксироваться температура воды и расход в подающем и обратном трубопроводах. Первое позволяет контролировать эффективность работы теплообменных устройств, второе — наличие утечек теплоносителя или подсосов водопроводной воды. Так, тепловычислитель ТСРВ-010 теплосчетчика «Взлет TCP» обеспечивает выполнение следующих типовых функций:

•             показание текущих значений расхода, температуры и давления в 1—4 трубопроводах;

•             показание текущих значений объема или массы теплоносителя, подаваемых по 1—4 трубопроводам;

•             показание текущего расхода теплоты по 1—2 тепловым системам;

•             архивирование в энергонезависимой памяти результатов измерений, вычислений и хранение этих величин при отключении питания;

•             ввод и вывод согласованных значений температуры и давления воды в источнике холодного водоснабжения, давления теплоносителя в трубопроводах;

•             вывод перечисленной и диагностической информации через последовательные интерфейсы RS-232 (в том числе через телефонный и радиомодемы), RS-485, а также на печатающее устройство через адаптер принтера;

•             вывод значений расхода в одном-двух каналах в виде импульсной последовательности, а по одному из каналов в виде унифицированного токового сигнала;

•             определение, индикация и запись в архив неисправностей теплосчетчика, нештатных состояний тепловой системы, времени работы и останова теплосчетчика для каждой из тепловых систем;

•             защиту архивных данных от несанкционированного доступа.

В качестве примера для закрытой системы теплоснабжения диагностируемые нештатные состояния у теплосчетчика ТСРВ-010 включают:

•             превышение расходом G1 максимального заданного значения;

•             снижение расхода G1, ниже минимального заданного значения;

•             G2 > G1;

•             t2 > t1.

Структурная схема тепловычислителя ТСРВ-010, выполненного в одноплатном варианте, содержит конструктивные элементы, представленные на рис. 2.





Структурная схема теплосчетчика

Рис. 2. Структурная схема теплосчетчика

Все первичные преобразователи подключаются к тепловычислителю экранированными проводами. Термопреобразователи (ПТ) подключаются к тепловычислителю по трехпроводной схеме, их число может достигать шести. К электромагнитному преобразователю расхода (ПР) по двум проводам подается импульсное напряжение возбуждения (накачки), по двум — отводится модулированный по амплитуде импульсный сигнал, пропорциональный расходу. Максимальное число расходомеров составляет четыре, при этом два расходомера могут быть ультразвуковыми. Преобразователи давления (ПД) с токовым выходным сигналом 4...20 мА подключаются к тепловычислителю двумя проводами, с сигналом 0...5 мА — тремя проводами. Число преобразователей давления, подключенных к теплосчетчику, может быть увеличено с двух до четырех при сокращении числа термопреобразователей сопротивления.

В тепловычислителе вводимые сигналы нормализуются (Н) и коммутатором (К) периодически подключаются к АЦП, а затем — микропроцессору (МП). В ПЗУ хранятся архивируемые данные, вводимые постоянные, расчетные соотношения, последовательность управляющих команд. Устройства вывода включают блок жидкокристаллического индикатора (ЖКИ), ЦАП, коммутатор, модули RS-232, RS-485 и другие элементы, обеспечивающие работу внешних устройств. Показания тепловычислителя могут сниматься по нескольким каналам: с жидкокристаллического дисплея, по RS-232 через адаптер печататься на принтере, выводиться на персональный компьютер (ПК) или с помощью модема передаваться на удаленные устройства. Этот теплосчетчик имеет импульсный выход и может иметь дополнительно токовый выходной сигнал или интерфейс RS-485. Программирование прибора производится с пульта управления или персонального компьютера.

Сети приборов коммерческого учета. Плата за энергоносители, воду является значительной статьей расходов любого производства и жилищно-коммунального хозяйства. На промышленных предприятиях, электростанциях, в районах тепловых сетей и прочие, используя интерфейс RS-232 или RS-485, создаются локальные сети, объединяющие средства учета расхода электроэнергии, потребления газа и теплоты. В принципе такие сети могут создаваться с использованием Internet, но в производственных объединениях предпочитают закрытые корпоративные сети, а на отдельных предприятиях — локальные. Сложность создания таких систем определяется тем, что при использовании стандартных протоколов RS-232, RS-485, HART изготовители теплосчетчиков, расходомеров и других первичных средств измерения используют индивидуальные протоколы вывода числовых данных, что требует адаптации центрального вычислителя к парку используемых средств измерения.

Измерительно-вычислительный комплекс АСУТ-601 предназначен для коммерческого учета тепловой энергии и теплоносителей у производителей и потребителей тепловой энергии. Комплекс позволяет вести учет следующих сред:

•             горячей и холодной воды;

•             водяного пара;

•             возвратного конденсата;

•             подпитки;

•             стоков;

•             природных и технических газов.

Количество обсчитываемых трубопроводов может достигать 100. Ввод сигналов от первичных преобразователей температуры, давления, разности давлений, их первичное преобразование в значение измеряемых параметров производится в теплосчетчиках, расходомерах, счетчиках газа.

Центральной частью АСУТ-601 является вычислитель на базе персонального компьютера с процессором PENTIUM-133 МГц с развитым программным обеспечением, включающим операционные системы QNX 4.25, Windows NT, MS DOS; ПО реального времени COMPLEX; базы данных реального времени; средства их генерации.

Максимальное число интерфейсных каналов RS-485 равно 24. В табл. 2 приведены типы подключаемых к комплексу приборов, их максимальное количество на одной линии и максимальное расстояние между прибором и вычислителем.

Таблица 2 Средства измерений, работающие с АСУТ-601

Тип

Максимальное количество

Максимальное расстояние, м

Теплосчетчики

СТД

32

1200

СПТ961К

30

15 000

УВП-2В1

32

1500

Счетчики расхода

СПГ761

30

15 000

Гиперфлоу — ЗП с БВ-002

40

2000

Гиперфлоу — ЗП с МАС-003

10

1200

Взлет MP УРСВ-5ХХ

32

1200

UFM 005

32

1200

UFC 00R

32

1000

Для учета энергозатрат предприятий одного ведомства в пределах региона создаются корпоративные сети. В качестве примера такие сети могут быть созданы на основе программного комплекса «Взлет СП», ориентированного на приборы, выпускаемые фирмами «Взлет», «Логика» и объединяющими средства учета количества газа, нефтепродуктов, теплоты и стоков, энергопотребления. Эта система, представленная на рис. 3, в пределах региона может объединять несколько сотен коммерческих узлов учета.





Структурная схема сети приборов «Взлет СП»

Рис. 3. Структурная схема сети приборов «Взлет СП»

Компоненты «Взлет СП» используют объекты русской версии MS Office 2000. Объекты Excel применяются для представления электронных таблиц и графиков, Access — для подготовки отчетных документов. При построении сети приборов используются соединения типа шина и кольцо. Шинное объединение основывается на интерфейсе RS-485. Шина «Взлет» является шиной с одним ведущим абонентом, а остальные — ведомыми. Ведущий абонент (персональный компьютер) управляет передачей сообщений. Ведомый абонент дает сообщение только после получения запроса в течение заданного интервала времени. На шине используются два протокола Modbus и Bitbus, что позволяет подключать к ней приборы, использующие разные протоколы. Скорость обмена составляет от 600 до 19200 бит/с. Хотя логическая емкость шины допускает более 200 адресов, но из-за ограниченной нагрузочной способности передатчика (32 приемника) ее возможности могут быть использованы только при применении специальных повторителей.

Для объединения шин «Взлет» и маркерных шин фирмы «Логика» в единую сеть используется адаптер сетевых протоколов «Взлет АСП». Устройство имеет два разъема подключения, каждый из которых содержит цепи интерфейсов RS-232 и RS-485. Структурная схема на рис. 3 относится к одному из вариантов рассматриваемой системы. К шине Ethernet корпоративной сети подключены персональные компьютеры с установленным комплексом «Взлет СП». К персональному компьютеру № 3 через адаптер АПС69М подключена маркерная шина, к которой через адаптеры «Взлет АСП» подключены шины «Взлет» № 1 и 2. К маркерной шине подключены счетчики газа (СПГ761), теплоты (СПТ961), электроэнергии (СПЕ542) фирмы «Логика» и через адаптер «Взлет АСП» электромагнитные счетчики расхода ЭРСВ-310 и ЭРСВ-410. К шинам «Взлет» № 1 и 2 подключены ультразвуковые расходомеры УРСВ и тепловычислитель ТСРВ фирмы «Взлет».

В рассматриваемом режиме работы системы, а их может быть несколько, любой из ПК получает доступ к любой из трех приборных шин через ПК № 3, через ПК № 2 по телефонным линиям через модем СПЕ542 и через ПК № 4 по радиоканалу с использованием радиомодема СПГ761. Этот же канал обеспечивает связь с одиночным теплосчетчиком ТСРВ. ПК № 6 и 7 также имеют доступ ко всем трем шинам, причем ПК № 7 является абонентом маркерной шины, а ПК № 6 получает доступ к ней через шлюз СПТ961. Эти компьютеры работают независимо друг от друга. Если некоторые приборы «Взлет» имеют только интерфейс RS-232, то для их подключения к маркерной шине используется адаптер «Взлет АСП». Этот же адаптер обеспечивает связь шин «Взлет» с ПК, на которых установлен комплекс «Взлет СП», либо непосредственно, либо через модемы по телефонным линиям или радиоканалам.



Другие статьи:

Вихревые и массовые расходомеры. Устройство, принцип действия, типы и виды вихревых и массовых расходомеров.
Ультразвуковые расходомеры. Устройство, принцип действия, типы и виды ультразвуковых расходомеров.
Электромагнитные расходомеры. Устройство, принцип действия, типы электромагнитных расходомеров.