Молниезащита
Измерительная техника
Статьи / Измерительная техника / Конструкция, устройство термоэлектрических преобразователей - термопары.
  26.12.11  |  

Конструкция, устройство термоэлектрических преобразователей - термопары.

Условно термоэлектрические преобразователи подразделяются на термопреобразователи общепромышленного назначения и специальные. Термоэлектрический преобразователь — это термопара с изолированными электродами, помещенными в защитную арматуру. Рассмотрим вначале первую группу. Существует большое разнообразие конструктивных исполнений преобразователей. На рис. 1 представлена схема устройства одной из разновидностей преобразователя общепромышленного назначения.


Конструкция термопреобразователя напряжения

Рис. 1. Конструкция термопреобразователя напряжения промышленного назначения.

1 — электроды; 2 — рабочий пай; 3 — трубка; 4 — защитная арматура; 5 — керамический наконечник; 6 — заливка; 7 — головка; 8 — сборка; 9 — зажимы; 10 — удлиняющие провода; 11 — герметизированный ввод; 12 — элементы крепления термопреобразователя

Электроды 1 термопреобразователей ТХК и ТХА общепромышленного назначения обычно выполняются из проволоки диаметром, обеспечивающим пренебрежимо малое сопротивление термопары и достаточную механическую прочность. При этом можно не учитывать изменение сопротивления электродов при изменении температуры, что важно при использовании некоторых типов милливольтметров в качестве вторичных приборов. Рабочий спай 2 обычно выполняется сваркой.

Для изоляции термоэлектродов используют кварцевые (до 1000 °С) или фарфоровые (до 1400 °С) трубки или бусы. При более высоких температурах применяются оксиды металлов: алюминия, магния, бериллия и т.п. На рис. 1 в качестве изолятора изображена трубка 3, представляющая стержень с двумя продольными отверстиями, в которые пропущены электроды. Рабочий спай может быть защищен керамическим наконечником 5. Материалом защитной арматуры 4 обычно является нержавеющая сталь (до 900 °С), при высоких температурах используются специальные сплавы. Арматура заканчивается головкой 7, в которой расположена сборка 8 с зажимами 9, к которым подведены электроды термопары и через герметизированный ввод 11 — термоэлектродные удлиняющие провода 10. Внутренняя полость защитной арматуры может быть герметизирована заливкой б верхней части. На наружной поверхности арматуры могут располагаться элементы 12 (например, штуцера) для крепления защитной арматуры к объекту. Защитная арматура может не иметь штуцера, либо штуцер может быть подвижным (при невысоких давлениях контролируемой среды). Длина монтажной части L различных модификаций составляет (0,08...2,5) м, диаметр рабочей части (5...25) мм.

Конструкция, в которой рабочий спай изолирован от защитной арматуры, представлена на рис. 1. Существуют конструкции, в которых рабочий спай приварен к чехлу или прижат к нему. Это снижает инерционность преобразователя, но резко уменьшает помехозащищенность измерительного канала, особенно при заземлении какой-либо точки входного элемента потенциометра. Это вызвано тем, что рабочий спай через свою арматуру и защитный чехол оказывается заземленным, причем в другой точке, чем заземление измерительного прибора. В этом случае образуется паразитный контур и при различии потенциалов точек заземления на входе вторичного прибора появляется паразитный сигнал, не устраняемый входным фильтром. В силу этого целесообразно применять преобразователи с изолированным рабочим спаем.

Специальные термопреобразователи изготовляются на основе кабельных термопреобразователей типов КТХАС, КТХАСП, КТХКС. Они предназначены для измерения температуры от -50 до 1000 °С ив основном используются в реакторной термометрии. Кабельные термопреобразователи имеют наружный диаметр от 1 до 6 мм, длину от 10 до 50 м с числом жил 2 или 4 (одна жила или одна пара жил из хромеля, другая из копеля или алюмеля). Схематично устройство кабельного термопреобразователя с изолированным рабочим спаем представлено на рис. 2, а. Возможна конструкция термопреобразователей, у которых рабочий спай не изолирован от оболочки.


Конструкция термоэлектрического преобразователя специального применения

Рис. 2. Конструкция термоэлектрического преобразователя специального применения:

а, 6 — одно- и многозонный преобразователи; 1 — рабочий спай; 2 — термоэлектроды; 3 — оболочка; 4 — втулка; 5 — герметик; 6 — выводы

В кабельных преобразователях изоляция термоэлектродов осуществляется спрессованным порошком оксида магния. Существенным ее недостатком является гигроскопичность, причем с повышением влажности она набухает (может разорвать оболочку) и теряет изоляционные качества. Поэтому герметизация концов термопреобразователя с последующей проверкой ее качества обязательна. Материал оболочки — нержавеющая сталь. При малых диаметрах термопреобразователя электроды оказываются очень тонкими (до 0,2 мм) и с большим погонным сопротивлением. Для повышения прочности и уменьшения сопротивления измерительной цепи во втулке 4 они наращиваются более толстыми проводниками того же материала, которые и являются выводами. Существуют преобразователи с утоненным или плоским рабочим участком.

В качестве изолятора может быть использован оксид алюминия, обладающий хорошими изоляционными свойствами до 1200 °С, радиационно стойкий, подобно оксиду магния, он также гигроскопичен (хотя не набухает при увлажнении). Его недостаток — твердость зерен, что не обеспечивает плотной упаковки и соответственно высокой изоляции. Для измерения температур до 2000 °С может быть использован оксид бериллия, недостаток которого — токсичность.

Специфические (наряду с общими) требования предъявляются к материалам оболочек термопреобразователей для реакторных измерений: минимальное сечение поглощения нейтронов, минимальная наведенная активность, высокая радиационная стойкость, высокая коррозионная стойкость и технологичность. В качестве материала применяются стали с большим содержанием никеля. При изготовлении термопреобразователей важно следить за качеством изоляции электродов между собой и от оболочки. Наличие трещин или газовых полостей в изоляции приведет к понижению сопротивления под действием излучения и появлению ионизационных токов. Поэтому обязательной является процедура проверки герметичности оболочки и измерение сопротивления изоляции. По существующим нормам сопротивление должно быть не менее 1000 МОм.

Для измерения температуры в нескольких точках могут использоваться кабельные многозонные термопреобразователи (рис. 2, б). Такой преобразователь (ТЭП) имеет три или пять рабочих спаев при расстоянии между ними 1 или 1,5 м при общей длине 25 м и внешнем диаметре оболочки 3 или 6 мм. Число выводов ТЭП соответственно равно 4 или 6. Из рис. 2, б видно, что для измерения температуры в точке t1 прибор нужно подключить к выводам 1 и 4, а для измерения в точке t3 — к выводам 3 и 4. Все материалы н элементы многозонного ТЭП аналогичны однозонному (рис. 2, а). Достоинства такого ТЭП очевидны — возможность измерения температуры в нескольких точках в труднодоступных местах благодаря большой протяженности и малому диаметру при малом количестве металла, вводимого в контролируемую зону.

Удлиняющие термоэлектродные провода обычно изготавливаются в виде пары изолированных проводов сечением (0,2...4) мм2 в общей оболочке. Материал изоляции проводов и оболочки определяется условиями прокладки. Для целей помехозащищенности выпускаются провода, экранированные металлической оплеткой. Учитывая, что каждый провод удлиняющих проводов должен подключаться к определенному электроду термопреобразователя, изоляция проводов или цветные нити в оплетках имеют определенную расцветку.


Схемы измерительного комплекта

Рис. 3. Схемы измерительного комплекта с размещением свободных концов в УК (в) и в ИП (б)

Итак, можно уже представить из чего должен состоять измерительный комплект для измерения температуры термоэлектрическим методом (рис. 3, а): термоэлектрический преобразователь (ТЭП), компенсационное устройство (УК) для автоматического введения поправки на изменение температуры свободных концов преобразователя, удлиняющих термоэлектродных проводов TЭ1 и ТЭ2 между ТЭП и УК (чтобы свободные концы оказались на зажимах УК) и измерительного прибора (ИП). Между УК и ИП соединительная линия выполняется одинаковыми монтажными (медными) проводами (МП). Обычно введение поправки на изменение температуры свободных концов осуществляется схемой самого прибора ИП. В этом случае отдельный блок УК не применяется, и ТЭП подключается непосредственно к ИП удлиняющими термоэлектродными проводами (рис. 3, б). Целиком измерительный комплект называется термоэлектрическим термометром. При применении длинных термопреобразователей (кабельных), их концы могут непосредственно соединяться с зажимами УК или ИП без использования удлиняющих термоэлектродных проводов.




Другие статьи:

Термопара - термоэлектрический преобразователь. Теория, устройство, характеристики, принцип работы термопар.
Термопреобразователи сопротивления. Устройство, характеристики, виды и типы, схемы термопреобразователей сопротивления ТСП, ТСМ, ТСПУ, ТСМУ.
Термопреобразователи сопротивления. Характеристики, расшифровка условного обозначения термопреобразователей сопротивления ТСМ, ТСП, ТСПУ, ТСМУ, Метран.