Молниезащита
Теория электротехники
Статьи / Теория электротехники / Генератор тока. Устройство и прицип действия генератора.
  30.05.11  |  

Генератор тока. Устройство и прицип действия генератора.

Генератор тока преобразует механическую (кинетическую) энергию в электроэнергию. В энергетике пользуются только вращающимися электромашинными генераторами, основанными на возникновении электродвижущей силы (ЭДС) в проводнике, на который каким-либо образом действует изменяющееся магнитное поле. Ту часть генератора, которая предназначена для создания магнитного поля, называют индуктором, а часть, в которой индуцируется ЭДС – якорем.

Вращающуюся часть машины называют ротором, а неподвижную часть – статором. В синхронных машинах переменного тока индуктором обычно является ротор, а в машинах постоянного тока – статор. В обоих случаях индуктор представляет собой обычно двух- или многополюсную электромагнитную систему, снабженную обмоткой возбуждения, питаемой постоянным током (током возбуждения), но встречаются и индукторы, состоящие из системы постоянных магнитов. В индукционных (асинхронных) генераторах переменного тока индуктор и якорь не могут четко (конструктивно) различаться друг от друга (можно сказать, что статор и ротор одновременно являются и индуктором и якорем).

Более 95 % электроэнергии на электростанциях мира производится при помощи синхронных генераторов переменного тока. При помощи вращающегося индуктора в этих генераторах создается вращающееся магнитное поле, наводящее в статорной (обычно трехфазной) обмотке переменную ЭДС, частота которой точно соответствует частоте вращения ротора (находится в синхронизме с частотой вращения индуктора). Если индуктор, например, имеет два полюса и вращается с частотой 3000 r/min (50 r/s), то в каждой фазе статорной обмотки индуцируется переменная ЭДС частотой 50 Hz. Конструктивное исполнение такого генератора упрощенно изображено на рис. 1.

синхронный генератор

Рис. 1. Принцип устройства двухполюсного синхронного генератора. 1 статор (якорь), 2 ротор (индуктор), 3 вал, 4 корпус. U-X, V-Y, W-Z – размещенные в пазах статора части обмоток трех фаз

Магнитная система статора представляет собой спрессованный пакет тонких стальных листов, в пазах которого располагается статорная обмотка. Обмотка состоит из трех фаз, сдвинутых в случае двухполюсной машины друг относительно друга на 1/3 периметра статора; в фазных обмотках индуцируются, следовательно, ЭДС, сдвинутые друг относительно друга на 120o. Обмотка каждой фазы, в свою очередь, состоит из многовитковых катушек, соединенных между собой последовательно или параллельно. Один из наиболее простых вариантов конструктивного исполнения такой трехфазной обмотки двухполюсного генератора упрощенно представлен на рис. 2 (обычно число катушек в каждой фазе больше, чем показано на этом рисунке). Те части катушек, которые находятся вне пазов, на лобовой поверхности статора, называются лобовыми соединениями.

трехфазный двухполюсный синхронный генератор

Рис. 2. Простейший принцип устройства статорной обмотки трехфазного двухполюсного синхронного генератора в случае двух катушек в каждой фазе. 1 развертка поверхности магнитной системы статора, 2 катушки обмотки, U, V, W начала фазных обмоток, X, Y, Z концы фазных обмоток

Полюсов индуктора и, в соответствии с этим, полюсных делений статора, может быть и больше двух. Чем медленнее вращается ротор, тем больше должно быть при заданной частоте тока число полюсов. Если, например, ротор вращается с частотой 300 r/min, то число полюсов генератора, для получения частоты переменного тока 50 Hz, должно быть 20. Например, на одной из крупнейших гидроэлектростанций мира, ГЭС Итайпу (Itaipu, см. рис. 4) генераторы, работающие на частоте 50 Hz, исполнены 66-полюсными, а генераторы, работающие на частоте 60 Hz – 78-полюсными.

Обмотка возбуждения двух- или четырехполюсного генератора размещается, как показано на рис. 1, в пазах массивного стального сердечника ротора. Такая конструкция ротора необходима в случае быстроходных генераторов, работающих при частоте вращения в 3000 или 1500 r/min (особенно для турбогенераторов, предназначенных для соединения с паровыми турбинами), так как при такой скорости на обмотку ротора действуют большие центробежные силы. При большем числе полюсов каждый полюс имеет отдельную обмотку возбуждения (рис. 3.12.3). Такой явнополюсный принцип устройства применяется, в частности, в случае тихоходных генераторов, предназначенных для соединения с гидротурбинами (гидрогенераторов), работающих обычно при частоте вращения от 60 r/min до 600 r/min.

Очень часто такие генераторы, в соответствии с конструктивным исполнением мощных гидротурбин, выполняются с вертикальным валом.

тихоходный синхронный генератор

Рис. 3. Принцип устройства ротора тихоходного синхронного генератора. 1 полюс, 2 обмотка возбуждения, 3 колесо крепления, 4 вал

Обмотку возбуждения синхронного генератора обычно питают постоянным током от внешнего источника через контактные кольца на валу ротора. Раньше для этого предусматривался специальный генератор постоянного тока (возбудитель), жестко связанный с валом генератора, а в настоящее время используются более простые и дешевые полупроводниковые выпрямители. Встречаются и системы возбуждения, встроенные в ротор, в которых ЭДС индуцируется статорной обмоткой. Если для создания магнитного поля вместо электромагнитной системы использовать постоянные магниты, то источник тока возбуждения отпадает и генератор становится значительно проще и надежнее, но в то же время и дороже. Поэтому постоянные магниты применяются обычно в относительно маломощных генераторах (мощностью до нескольких сотен киловатт).

Конструкция турбогенераторов, благодаря цилиндрическому ротору относительно малого диаметра, очень компактна. Их удельная масса составляет обычно 0,5…1 kg/kW, и их номинальная мощность можеь достигать 1600 MW. Устройство гидрогенераторов несколько сложнее, диаметр ротора велик и удельная масса их поэтому обычно 3,5…6 kg/kW. До настоящего времени они изготовлялись номинальной мощностью до 800 MW.

При работе генератора в нем возникают потери энергии, вызванные активным сопротивлением обмоток (потери в меди), вихревыми токами и гистерезисом в активных частях магнитной системы (потери в стали) и трением в подшипниках вращающихся частей (потери на трение). Несмотря на то, что суммарные потери обычно не превышают 1…2 % мощности генератора, отвод тепла, освобождающегося в результате потерь, может оказаться затруднительным. Если упрощенно считать, что масса генератора пропорциональна его мощности, то его линейные размеры пропорциональны кубическому корню мощности, а поверхностные размеры – мощности в степени 2/3. С увеличением мощности, следовательно, поверхность теплоотвода растет медленнее, чем номинальная мощность генератора. Если при мощностях порядка нескольких сотен киловатт достаточно применять естественное охлаждение, то при бoльших мощностях необходимо перейти на принудительную вентиляцию и, начиная приблизительно со 100 MW, использовать вместо воздуха водород. При еще больших мощностях (например, более 500 MW) необходимо дополнить водородное охлаждение водным. У крупных генераторах надо специально охлаждать и подшипники, обычно используя для этого циркуляцию масла.

Тепловыделение генератора можно значительно уменьшить путем применения сверхпроводящих обмоток возбуждения. Первый такой генератор (мощностью 4 MVA), предназначенный для применения на судах, изготовила в 2005 году немецкая электротехническая фирма Сименс (Siemens AG) [3.24]. Номинальное напряжение синхронных генераторов, в зависимости от мощности, находится обычно в пределах от 400 V до 24 kV. Использовались и более высокие номинальные напряжения (до 150 kV), но чрезвычайно редко. Кроме синхронных генераторов сетевой частоты (50 Hz или 60 Hz) выпускаются и высокочастотные генераторы (до 30 kHz) и генераторы пониженной частоты (16,67 Hz или 25 Hz), используемые на электрифицированных железных дорогах некоторых европейских стран. К синхронным генераторам относится, в принципе, и синхронный компенсатор, представляющий собой синхронный двигатель, работающий на холостом ходу и отдающий в высоковольтную распределительную сеть реактивную мощность. При помощи такой машины можно покрыть потребление реактивной мощности местных промышленных электропотребителей и освободить основную сеть энергосистемы от передачи реактивной мощности.

Кроме синхронных генераторов относительно редко и при относительно малых мощностях (до нескольких мегаватт) могут использоваться и асинхронные генераторы. В обмотке ротора такого генератора ток индуцируется магнитным полем статора, если ротор вращается быстрее, чем статорное вращающееся магнитное поле сетевой частоты. Необходимость в таких генераторах возникает обычно тогда, когда невозможно обеспечить неизменную скорость вращения первичного двигателя (например, ветряной турбины, некоторых малых гидротурбин и т. п.).

У генератора постоянного тока магнитные полюсы вместе с обмоткой возбуждения располагаются обычно в статоре, а обмотка якоря – в роторе. Так как в обмотке ротора при его вращении индуцируется переменная ЭДС, то якорь необходимо снабжать коллектором (коммутатором), при помощи которого на выходе генератора (на щетках коллектора) получают постоянную ЭДС. В настоящее время генераторы постоянного тока применяются редко, так как постоянный ток проще получать при помощи полупроводниковых выпрямителей.

К электромашинным генераторам относятся и электростатические генераторы, на вращающейся части которых путем трения (трибоэлектрически) создается электрический заряд высокого напряжения. Первый такой генератор (вращаемый вручную серный шар, который электризовался при трении об руку человека) изготовил в 1663 году мэр города Магдебурга (Magdeburg, Германия) Отто фон Гюрике (Otto von Guericke, 1602–1686). В ходе своего развития такие генераторы позволяли открывать многие электрические явления и закономерности. Они и сейчас не потеряли своего значения как средств проведения экспериментальных исследований по физике.

Первый магнитоэлектрический генератор изготовил 4 ноября 1831 года профессор Лондонского Королевского института (Royal Institution) Майкл Фарадей (Michael Faraday, 1791–1867). Генератор состоял из подковообразного постоянного магнита и медного диска, вращающегося между магнитными полюсами (рис. 3.12.4). При вращении диска между его осью и краем индуцировалась постоянная ЭДС. По такому же принципу устроены более совершенные униполярные генераторы, находящие применение (хотя относительно редко) и в настоящее время.

униполярный генератор

Рис. 4. Принцип устройства униполярного генератора Майкла Фарадея. 1 магнит, 2 вращающийся медный диск, 3 щетки. Рукоятка диска не показана

Майкл Фарадей родился в бедной семье и после начальной школы, в возрасте 13 лет, поступил учеником переплетчика книг. По книгам он самостоятельно продолжал свое образование, а по Британской энциклопедии ознакомился с электричеством, изготовил электростатический генератор и лейденскую банку. Для расширения своих знаний он начал посещать публичные лекции по химии директора Королевского института Гемфри Дэви (Humphrey Davy, 1778–1829), а в 1813 году получил должность его ассистента. В 1821 году он стал главным инспектором этого института, в 1824 году – членом Королевского общества (Royal Society) и в 1827 году – профессором химии Королевского института. В 1821 году он начал свои знаменитые опыты по электричеству, в ходе которых предложил принцип действия электродвигателя, открыл явление электромагнитной индукции, принцип устройства магнитоэлектрического генератора, закономерности электролиза и много других основополагающих физических явлений. Спустя год после вышеописанного опыта Фарадея, 3 сентября 1832 года, парижский механик Ипполит Пикси (Hippolyte Pixii, 1808–1835) изготовил по заказу и под руководством основоположника электродинамики Андре Мари Ампера (Andre Marie Ampere, 1775–1836) генератор с вращаемым вручную, как у Фарадея, магнитом (рис. 5). В якорной обмотке генератора Пикси индуцируется переменная ЭДС. Для выпрямления получаемого тока к генератору вначале пристроили открытый ртутный коммутатор, переключающий полярность ЭДС при каждом полуобороте ротора, но вскоре он был заменен более простым и безопасным цилиндрическим щеточным коллектором, изображенным на рис. 5.

магнитоэлектрический генератор

Рис. 5. Принцип устройства магнитоэлектрического генератора Ипполита Пикси (a), график индуцируемой ЭДС (b) и график получаемой при помощи коллектора пульсирующей постоянной ЭДС (c). Рукоятка и конусная зубчатая передача не показаны

Генератор, построенный по принципу Пикси, впервые применил в 1842 году на своем заводе в Бирмингеме (Birmingham) для электропитания гальванических ванн английский промышленник Джон Стивен Вульрич (John Stephen Woolrich, 1790–1843), использовав в качестве приводного двигателя паровую машину мощностью 1 л. с. Напряжение его генератора составляло 3 V, номинальный ток – 25 A и кпд – около 10 %. Такие же, но более мощные генераторы быстро начали внедряться и на других гальванических предприятиях Европы. В 1851 году немецкий военный врач Вильгельм Йозеф Зинштеден (Wilhelm Josef Sinsteden, 1803–1891) предложил использовать в индукторе вместо постоянных магнитов электромагниты и питать их током от меньшего вспомогательного генератора; он же обнаружил, что кпд генератора увеличится, если стальной сердечник электромагнита изготовить не массивным, а из параллельных проволок. Однако идеи Зинштедена стал реально использовать только в 1863 году английский электротехник-самоучка Генри Уайльд (Henry Wilde, 1833–1919), который предложил, среди прочих нововведении, насадить машину-возбудитель (англ. exitatrice) на вал генератора. В 1865 году он изготовил генератор невиданной доселе мощности в 1 kW, при помощи которого он мог демонстрировать даже плавку и сварку металлов.

Важнейшим усовершенствованием генераторов постоянного тока стало их самовозбуждение, принцип которого запатентовал в 1854 году главный инженер государственных железных дорог Дании Сёрен Хьёрт (Soren Hjorth, 1801–1870), но не нашедшее в то время практического применения. В 1866 году этот принцип снова открыли независимо друг от друга несколько электротехников, в том числе уже упомянутый Г. Уайльд, но широко известным он стал в декабре 1866 года, когда немецкий промышленник Эрнст Вернер фон Сименс (Ernst Werner von Siemens, 1816–1892) применил его в своем компактном и высокоэффективном генераторе. 17 января 1867 года в Берлинской академии наук был прочитан его знаменитый доклад о динамоэлектрическом принципе (о самовозбуждении). Самовозбуждение позволило отказатьса от вспомогательных генераторов возбуждения (от возбудителей), что обусловило возможность выработки намного более дешевой электроэнергии в больших количествах. По этой причине год 1866 часто считают годом зарождения электротехники сильного тока. В первых самовозбуждающихся генераторах обмотку возбуждения включали, как у Сименса, последовательно (сериесно) с якорной обмоткой, но в феврале 1867 года английский электротехник Чарлз Уитстон (Charles Wheatstone, 1802–1875) предложил параллельное возбуждение, позволяющее лучше регулировать ЭДС генератора, к которому он пришел еще до сообщений о последовательном возбуждении, открытом Сименсом (рис. 6).

генераторы постоянного тока

Рис. 6. Развитие систем возбуждения генераторов постоянного тока. a возбуждение при помощи постоянных магнитов (1831), b внешнее возбуждение (1851), c последовательное самовозбуждение (1866), d параллельное самовозбуждение (1867). 1 якорь, 2 обмотка возбуждения. Регулировочные реостаты тока возбуждения не показаны

Необходимость в генераторах переменного тока возникла в 1876 году, когда работающий в Париже русский электротехник Павел Яблочков (1847–1894) стал освещать городские улицы при помощи изготовляемых им дуговых ламп переменного тока (свечей Яблочкова). Первые необходимые для этого генераторы создал парижский изобретатель и промышленник Зеноб Теофиль Грамм (Zenobe Theophile Gramme, 1826–1901). С началом массового производства ламп накаливания в 1879 году переменный ток на некоторое время потерял свое значение, но снова обрел актуальность в связи с ростом дальности передачи электроэнергии в середине 1880-х годов. В 1888–1890 годах владелец собственной научно-исследовательской лаборатории Тесла-Электрик (Tesla-Electric Co., Нью-Йорк, США) эмигрировавший в США сербский электротехник Никола Тесла (Nikola Tesla, 1856–1943) и главный инженер фирмы АЭГ (AEG, Allgemeine Elektricitats-Gesellschaft) эмигрировавший в Германию русский электротехник Михаил Доливо-Добровольский (1862–1919) разработали трехфазную систему переменного тока. В результате началось производство все более мощных синхронных генераторов для сооружаемых тепло- и гидроэлектростанций.

Важным этапом в развитии турбогенераторов может считаться разработка в 1898 году цилиндрического ротора совладельцем швейцарского электротехнического завода Браун, Бовери и компания (Brown, Boveri & Cie., BBC) Чарлзом Эженом Ланселотом Брауном (Charles Eugen Lancelot Brown, 1863–1924). Первый генератор с водородным охлаждением (мощностью 25 MW) выпустила в 1937 году американская фирма Дженерал Электрик (General Electric), а с внутрипроводным водяным охлаждением – в 1956 году английская фирма Метрополитен Виккерс (Metropolitan Vickers).



Другие статьи:

Инвертор. Устройство и принцип действия инвертора.
Выпрямитель. Устройство и принцип действия выпрямителя.
Трансформатор. Устройство и принцип действия трансформатора.